The Middle Eocene Climatic Optimum (MECO) was an unusual global warming event that interrupted the long-term Eocene cooling trend ca. 40 Ma. Here we present new high-resolution bulk and benthic isotope records from South Atlantic ODP Site 702 to characterize the MECO at a high latitude setting. The MECO event, including early and peak warming as well as recovery to background levels, had an estimated~300 Kyr duration (~40.51 to~40.21 Ma). Cross-plots (δ 18 O vs. δ 13 C) suggest that the mechanisms driving coupled changes in O and C isotope values across the MECO were weaker or absent before the event. The paleoecological response has been evaluated by quantitative analysis of calcareous nannofossils and benthic foraminifera assemblages. We document a shift in the biogeographical distribution of warm and temperate calcareous nannoplankton taxa, which migrated toward higher latitudes due to increased temperatures during the MECO. Conversely, changes in the organic matter flux to the seafloor appear to have controlled benthic foraminifera dynamics at Site 702. Benthic phytodetritus exploiting taxa increased in abundance coinciding with a positive δ 13 C excursion,~150 Kyr before the start of the δ 18 O negative excursion that marks the start of MECO warming. Our data suggest that paleoecological disturbance in the deep sea predates MECO δ 18 O excursion and that it was driven by changes in the type and/or amount of organic matter reaching the seafloor rather than by increased temperature.
Biostratigraphic analysis of the Eocene-Oligocene transition (E-O) at the Menzel Bou Zelfa and Jhaff composite section in the Cap Bon Peninsula (North East Tunisia) allowed us to recognize a continuous planktic foraminiferal biozonation: E14 Globigerinatheka semiinvoluta Zone, E15 Globigerinatheka index Zone, E16 Hantkenina alabamensis Zone and O1 Pseudohastigerina naguewichiensis Zone. A quantitative study of benthic and planktic foraminifera assemblages was carried out and the richness and diversity of foraminifera allowed us to reconstruct the paleoenvironmental evolution from marine to terrestrial environments. From the Eocene E14 Zone, the foraminiferal association characterizes a relatively warm climate with considerable oxygen content and a dominance of keeled and spinose planktic foraminifera, which became extinct at the E/O boundary, possibly due to cooling of the planktic environment. Nevertheless, the small benthic foraminifera do not show an extinction event at the Eocene/Oligocene (E/O) boundary, indicating that the benthic environment was not significantly affected. In the basal Oligocene O1 Zone, the benthic environment changes to a shallower setting due to cooling of the climate. These changes generated a remarkable dominance of globular forms in the planktic environment. Small benthic foraminifera apparently have a gradual extinction event, or more likely a gradual pattern of local disappearances, that could have been caused by the Oi1 glaciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.