Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works.
We show how microscopic modelling techniques such as Cellular Automata linked with detailed geographical information systems (GIS) and meteorological data can be used to efficiently predict the evolution of fire fronts on mountainous and heterogeneous wild forest landscapes. In particular, we present a lattice-based dynamic model that includes various factors, ranging from landscape and earth statistics, attributes of vegetation and wind field data to the humidity of the fuel and the spotting transfer mechanism. We also attempt to model specific fire suppression tactics based on air tanker attacks utilising technical specifications as well as operational capabilities of the aircrafts. We use the detailed model to approximate the dynamics of a large-scale fire that broke out in a region on the west flank of the Greek National Park of Parnitha Mountain in June of 2007. The comparison between the simulation and the actual results showed that the proposed model predicts the fire-spread characteristics in an adequate manner. Finally, we discuss how such a detailed model can be exploited in order to design and develop, in a systematic way, fire risk management policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.