Resistance to azole drugs, the major clinical antifungal compounds, is most commonly due to gain-of-function (GOF) substitution mutations in a gene called PDR1 in the fungal pathogen Candida glabrata. PDR1 encodes a zinc cluster-containing transcription factor. GOF forms of Pdr1 drive high level expression of downstream target gene expression with accompanying azole resistance. PDR1 has two homologous genes in Saccharomyces cerevisiae, called ScPDR1 and ScPDR3. This study provides evidence that the PDR1 gene in C. glabrata represents a blend of the properties found in the two S. cerevisiae genes. We demonstrated that GOF Pdr1 derivatives are overproduced at the protein level and less stable than the wild-type protein. Overproduction of wild-type Pdr1 increased target gene expression but to a lesser extent than GOF derivatives. Site-directed mutagenesis of Pdr1 binding sites in the PDR1 promoter provided clear demonstration that autoregulation of PDR1 is required for its normal function. An internal deletion mutant of Pdr1 lacking its central regulatory domain behaved as a hyperactive transcription factor that was lethal unless conditionally expressed. A full understanding of the regulation of Pdr1 will provide a new avenue of interfering with azole resistance in C. glabrata.
Azole drugs are the most frequently used antifungal agents. The pathogenic yeast Candida glabrata acquires resistance to azole drugs via single amino acid substitution mutations eliciting a gain-of-function (GOF) hyperactive phenotype in the Pdr1 transcription factor. These GOF mutants constitutively drive high transcription of target genes such as the ATP-binding cassette transporter-encoding CDR1 locus. Previous characterization of Pdr1 has demonstrated that this factor is negatively controlled by the action of a central regulatory domain (CRD) of~700 amino acids, in which GOF mutations are often found. Our earlier experiments demonstrated that a Pdr1 derivative in which the CRD was deleted gave rise to a transcriptional regulator that could not be maintained as the sole copy of PDR1 in the cell owing to its toxically high activity. Using a set of GOF PDR1 alleles from azole-resistant clinical isolates, we have analyzed the mechanisms acting to repress Pdr1 transcriptional activity. Our data support the view that Pdr1-dependent transactivation is mediated by a complex network of transcriptional coactivators interacting with the extreme C-terminal part of Pdr1. These coactivators include but are not limited to the Mediator component Med15A. Activity of this C-terminal domain is controlled by the CRD and requires multiple regions across the C-terminus for normal function. We also provide genetic evidence for an element within the transactivation domain that mediates the interaction of Pdr1 with coactivators on one hand while restricting Pdr1 activity on the other hand. These data indicate that GOF mutations in PDR1 block nonidentical negative inputs that would otherwise restrain Pdr1 transcriptional activation. The strong C-terminal transactivation domain of Pdr1 uses multiple different protein regions to recruit coactivators.
Candida glabrata is the second most common species of Candida recovered from patients with invasive candidiasis. The increasing number of infections due to C. glabrata, combined with its high rates of resistance to the commonly used, well-tolerated azole class of antifungal agents, has limited the use of this antifungal class. This has led to the preferential use of echinocandins as empirical treatment for serious Candida infections. The primary mechanism of resistance found in clinical isolates is the presence of an activating mutation in the gene encoding the transcription factor Pdr1 that results in upregulation of one or more of the efflux pumps Cdr1, Pdh1, and Snq2. By developing a better understanding of this mechanism of resistance to the azoles, it will be possible to develop strategies for reclaiming the utility of the azole antifungals against this important fungal pathogen.
Background:In contrast to mammalian TRF1 and TRF2, yeast telomeric protein YlTay1 possesses two Myb domains. Results: Kinetic and thermodynamic analyses revealed binding properties of individual Myb domains of YlTay1p. Conclusion:The combined presence of the two Myb domains synergistically increases the affinity of YlTay1p to telomeric DNA. Significance: The study demonstrates evolutionary tinkering with telomere-associated proteins.
Mgm101 has well-characterized activity for the repair and replication of the mitochondrial genome. Recent work has demonstrated a further role for Mgm101 in nuclear DNA metabolism, contributing to an S-phase specific DNA interstrand cross-link repair pathway that acts redundantly with a pathway controlled by Pso2 exonuclease. Due to involvement of FANCM, FANCJ and FANCP homologues (Mph1, Chl1 and Slx4), this pathway has been described as a Fanconi anemia-like pathway. In this pathway, Mgm101 physically interacts with the DNA helicase Mph1 and the MutSα (Msh2/Msh6) heterodimer, but its precise role is yet to be elucidated. Data presented here suggests that Mgm101 functionally overlaps with Rad52, supporting previous suggestions that, based on protein structure and biochemical properties, Mgm101 and Rad52 belong to a family of proteins with similar function. In addition, our data shows that this overlap extends to the function of both proteins at telomeres, where Mgm101 is required for telomere elongation during chromosome replication in rad52 defective cells. We hypothesize that Mgm101 could, in Rad52-like manner, preferentially bind single-stranded DNAs (such as at stalled replication forks, broken chromosomes and natural chromosome ends), stabilize them and mediate single-strand annealing-like homologous recombination event to prevent them from converting into toxic structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.