We propose that closed Mad2 bound to Mad1 represents a template for the conversion of open Mad2 into closed Mad2 bound to Cdc20. This simple model, which we have named the "Mad2 template" model, predicts a mechanism for cytosolic propagation of the spindle checkpoint signal away from kinetochores.
The spindle checkpoint protein Mad1 recruits Mad2 to unattached kinetochores and is essential for Mad2–Cdc20 complex formation in vivo but not in vitro. The crystal structure of the Mad1–Mad2 complex reveals an asymmetric tetramer, with elongated Mad1 monomers parting from a coiled‐coil to form two connected sub‐complexes with Mad2. The Mad2 C‐terminal tails are hinged mobile elements wrapping around the elongated ligands like molecular ‘safety belts’. We show that Mad1 is a competitive inhibitor of the Mad2–Cdc20 complex, and propose that the Mad1–Mad2 complex acts as a regulated gate to control Mad2 release for Cdc20 binding. Mad1–Mad2 is strongly stabilized in the tetramer, but a 1:1 Mad1–Mad2 complex slowly releases Mad2 for Cdc20 binding, driven by favourable binding energies. Thus, the rate of Mad2 binding to Cdc20 during checkpoint activation may be regulated by conformational changes that destabilize the tetrameric Mad1–Mad2 assembly to promote Mad2 release. We also show that unlocking the Mad2 C‐terminal tail is required for ligand release from Mad2, and that the ‘safety belt’ mechanism may prolong the lifetime of Mad2–ligand complexes.
During mitosis in higher eukaryotes, nuclear pore complexes (NPCs) disassemble in prophase and are rebuilt in anaphase and telophase. NPC formation is hypothesized to occur by the interaction of mitotically stable subcomplexes that form defined structural intermediates. To determine the sequence of events that lead to breakdown and reformation of functional NPCs during mitosis, we present here our quantitative assay based on confocal time-lapse microscopy of single dividing cells. We use this assay to systematically investigate the kinetics of dis- and reassembly for eight nucleoporin subcomplexes relative to nuclear transport in NRK cells, linking the assembly state of the NPC with its function. Our data establish that NPC assembly is an ordered stepwise process that leads to import function already in a partially assembled state. We furthermore find that nucleoporin dissociation does not occur in the reverse order from binding during assembly, which may indicate a distinct mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.