Ether à go-go (EAG) potassium channels display oncogenic properties. In normal tissues, EAG mRNA is almost exclusively expressed in brain, but it is expressed in several somatic cancer cell lines, including HeLa, from cervix. Antisense experiments against eag reduce cell proliferation in some cancer cell lines, and inhibition of EAG-mediated currents has been suggested to decrease cell proliferation in a melanoma cell line. Because of the potential clinical relevance of EAG, we investigated EAG mRNA expression in the following fresh samples from human uterine cervix: 5 primary cultures obtained from cancerous biopsies, 1 cancerous fresh tissue, and 12 biopsies of control normal tissue. All of the control cervical samples came from patients with negative pap smears. Reverse transcription-PCR and Southern-blot experiments revealed eag expression in 100% of the cancerous samples and in 33% of the normal biopsies. Immunochemistry experiments showed the presence of EAG channel protein in cells from the primary cultures and in cervical cancer biopsies sections from the same patients. In addition, we looked for EAG-mediated currents in the cultures from cervical cancer cells. Here we show for the first time EAG channel activity in human tumors. Patch-clamp recordings showed typical EAG-mediated currents modulated by magnesium and displaying a pronounced Cole-Moore shift. Because EAG expression and channel activity have been suggested to be important in cell proliferation, our findings strongly support the idea of considering EAG as a tumor marker as well as a potential membrane therapeutic target for cervical cancer.
It is known that cancer progresses by vertical gene transfer, but this paradigm ignores that DNA circulates in higher organisms and that it is biologically active upon its uptake by recipient cells. Here we confirm previous observations on the ability of cell-free DNA to induce in vitro cell transformation and tumorigenesis by treating NIH3T3 recipient murine cells with serum of colon cancer patients and supernatant of SW480 human cancer cells. Cell transformation and tumorigenesis of recipient cells did not occur if serum and supernatants were depleted of DNA. It is also demonstrated that horizontal cancer progression mediated by circulating DNA occurs via its uptake by recipient cells in an in vivo model where immunocompetent rats subjected to colon carcinogenesis with 1,2-dimethylhydrazine had increased rate of colonic tumors when injected in the dorsum with human SW480 colon carcinoma cells as a source of circulating oncogenic DNA, which could be offset by treating these animals with DNAse I and proteases. Though the contribution of biologically active molecules other than DNA for this phenomenon to occur cannot be ruled out, our results support the fact that cancer cells emit into the circulation biologically active DNA to foster tumor progression. Further exploration of the horizontal tumor progression phenomenon mediated by circulating DNA is clearly needed to determine whether its manipulation could have a role in cancer therapy.
The clinical benefit noted with the epigenetic agents hydralazine and valproate in this selected patient population progressing to chemotherapy' and re-challenged with the same chemotherapy schedule after initiating hydralazine and valproate' lends support to the epigenetic-driven tumor-cell chemoresistance hypothesis (ClinicalTrials.gov Identifier: NCT00404508).
BackgroundAberrant DNA methylation and histone deacetylation participate in cancer development and progression; hence, their reversal by inhibitors of DNA methylation and histone deacetylases (HDACs) is at present undergoing clinical testing in cancer therapy. As epigenetic alterations are common to breast cancer, in this proof-of-concept study demethylating hydralazine, plus the HDAC inhibitor magnesium valproate, were added to neoadjuvant doxorubicin and cyclophosphamide in locally advanced breast cancer to assess their safety and biological efficacy.MethodologyThis was a single-arm interventional trial on breast cancer patients (ClinicalTrials.gov Identifier: NCT00395655). After signing informed consent, patients were typed for acetylator phenotype and then treated with hydralazine at 182 mg for rapid-, or 83 mg for slow-acetylators, and magnesium valproate at 30 mg/kg, starting from day –7 until chemotherapy ended, the latter consisting of four cycles of doxorubicin 60 mg/m2 and cyclophosphamide 600 mg/m2 every 21 days. Core-needle biopsies were taken from primary breast tumors at diagnosis and at day 8 of treatment with hydralazine and valproate.Main Findings16 patients were included and received treatment as planned. All were evaluated for clinical response and toxicity and 15 for pathological response. Treatment was well-tolerated. The most common toxicity was drowsiness grades 1–2. Five (31%) patients had clinical CR and eight (50%) PR for an ORR of 81%. No patient progressed. One of 15 operated patients (6.6%) had pathological CR and 70% had residual disease <3 cm. There was a statistically significant decrease in global 5mC content and HDAC activity. Hydralazine and magnesium valproate up- and down-regulated at least 3-fold, 1,091 and 89 genes, respectively.ConclusionsHydralazine and magnesium valproate produce DNA demethylation, HDAC inhibition, and gene reactivation in primary tumors. Doxorubicin and cyclophosphamide treatment is safe, well-tolerated, and appears to increase the efficacy of chemotherapy. A randomized phase III study is ongoing to support the efficacy of so-called epigenetic or transcriptional cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.