Loss of functionality during aging of cells and organisms is caused and accompanied by altered cell-to-cell communication and signalling. One factor thereby is the chronic accumulation of senescent cells and the concomitant senescence-associated secretory phenotype (SASP) that contributes to microenvironment remodelling and a pro-inflammatory status. While protein based SASP factors have been well characterized, little is known about small extracellular vesicles (sEVs) and their miRNA cargo. Therefore, we analysed secretion of sEVs from senescent human dermal fibroblasts and catalogued the therein contained miRNAs. We observed a four-fold increase of sEVs, with a concomitant increase of >80% of all cargo miRNAs. The most abundantly secreted miRNAs were predicted to collectively target mRNAs of pro-apoptotic proteins, and indeed, senescent cell derived sEVs exerted anti-apoptotic activity. In addition, we identified senescence-specific differences in miRNA composition of sEVs, with an increase of miR-23a-5p and miR-137 and a decrease of miR-625-3p, miR-766-3p, miR-199b-5p, miR-381-3p, miR-17-3p. By correlating intracellular and sEV-miRNAs, we identified miRNAs selectively retained in senescent cells (miR-21-3p and miR-17-3p) or packaged specifically into senescent cell derived sEVs (miR-15b-5p and miR-30a-3p). Therefore, we suggest sEVs and their miRNA cargo to be novel, members of the SASP that are selectively secreted or retained in cellular senescence.
Autophagy allows cells fundamental adaptations to metabolic needs and to stress. Using autophagic bulk degradation cells can clear crosslinked macromolecules and damaged organelles that arise under redox stress. Accumulation of such debris results in cellular dysfunction and is observed in aged tissue and senescent cells. Conversely, promising anti-aging strategies aim at inhibiting the mTOR pathway and thereby activating autophagy, to counteract aging associated damage. We have inactivated autophagy related 7 (Atg7), an essential autophagy gene, in murine keratinocytes (KC) and have found in an earlier study that this resulted in increased baseline oxidative stress and reduced capacity to degrade crosslinked proteins after oxidative ultraviolet stress. To investigate whether autophagy deficiency would promote cellular aging, we studied how Atg7 deficient (KO) and Atg7 bearing cells (WT) would respond to stress induced by paraquat (PQ), an oxidant drug commonly used to induce cellular senescence.Atg7 deficient KC displayed increased prostanoid signaling and a pro- mitotic gene expression signature as compared to the WT. After exposure to PQ, both WT and KO cells showed an inflammatory and stress-related transcriptomic response. However, the Atg7 deficient cells additionally showed drastic DNA damage- and cell cycle arrest signaling. Indeed, DNA fragmentation and –oxidation were strongly increased in the stressed Atg7 deficient cells upon PQ stress but also after oxidizing ultraviolet A irradiation. Damage associated phosphorylated histone H2AX (γH2AX) foci were increased in the nuclei, whereas expression of the nuclear lamina protein lamin B1 was strongly decreased. Similarly, in both, PQ treated mouse tail skin explants and in UVA irradiated mouse tail skin, we found a strong increase in γH2AX positive nuclei within the basal layer of Atg7 deficient epidermis.Atg7 deficiency significantly affected expression of lipid metabolic genes. Therefore we performed lipid profiling of keratinocytes which demonstrated a major dysregulation of cellular lipid metabolism. We found accumulation of autophagy agonisitic free fatty acids, whereas triglyceride levels were strongly decreased. Together, our data show that in absence of Atg7/autophagy the resistance of keratinocytes to intrinsic and environmental oxidative stress was severely impaired and resulted in DNA damage, cell cycle arrest and a disturbed lipid phenotype, all typical for premature cell aging.
Cellular senescence of normal human cells has by now far exceeded its initial role as a model system for aging research. Many reports show the accumulation of senescent cells in vivo, their effect on their microenvironment and its double-edged role as tumour suppressor and promoter. Importantly, removal of senescent cells delays the onset of age-associated diseases in mouse model systems. To characterize the role of miRNAs in cellular senescence of endothelial cells, we performed miRNA arrays from HUVECs of five different donors. Twelve miRNAs, comprising hsa-miR-23a, hsa-miR-23b, hsa-miR-24, hsa-miR-27a, hsa-miR-29a, hsa-miR-31, hsa-miR-100, hsa-miR-193a, hsa-miR-221, hsa-miR-222 and hsa-let-7i are consistently up-regulated in replicatively senescent cells. Surprisingly, also miR-21 was found up-regulated by replicative and stress-induced senescence, despite being described as oncogenic. Transfection of early passage endothelial cells with miR-21 resulted in lower angiogenesis, and less cell proliferation mirrored by up-regulation of p21CIP1 and down-regulation of CDK2. These two cell-cycle regulators are indirectly regulated by miR-21 via its validated direct targets NFIB (Nuclear factor 1 B-type), a transcriptional inhibitor of p21CIP1, and CDC25A, which regulates CDK2 activity by dephosphorylation. Knock-down of either NFIB or CDC25A shows a phenocopy of over-expressing miR-21 in regard to cell-cycle arrest. Finally, miR-21 over-epxression reduces the replicative lifespan, while stable knock-down by sponges extends the replicative lifespan of endothelial cells. Therefore, we propose that miR-21 is the first miRNA that upon its knock-down extends the replicative lifespan of normal human cells.
There is increasing evidence that senescent cells are a driving force behind many age-related pathologies and that their selective elimination increases the life- and healthspan of mice. Senescent cells negatively affect their surrounding tissue by losing their cell specific functionality and by secreting a pro-tumorigenic and pro-inflammatory mixture of growth hormones, chemokines, cytokines and proteases, termed the senescence-associated secretory phenotype (SASP). Here we identified an extract from the plant Solidago virgaurea subsp. alpestris, which exhibited weak senolytic activity, delayed the acquisition of a senescent phenotype and induced a papillary phenotype with improved functionality in human dermal fibroblasts. When administered to stress-induced premature senescent fibroblasts, this extract changed their global mRNA expression profile and particularly reduced the expression of various SASP components, thereby ameliorating the negative influence on nearby cells. Thus, the investigated plant extract represents a promising possibility to block age-related loss of tissue functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.