The plasma compartment has particular features regarding the nature and concentration of low and high molecular weight thiols and oxidized derivatives. Plasma is relatively poor in thiol-based antioxidants; thiols are in lower concentrations than in cells and mostly oxidized. The different thiol-disulfide pairs are not in equilibrium and the steady-state concentrations of total thiols as well as reduced versus oxidized ratios are maintained by kinetic barriers, including the rates of reactions and transport processes. The single thiol of human serum albumin (HSA-SH) is the most abundant plasma thiol. It is an important target for oxidants and electrophiles due to its reactivity with a wide variety of species and its relatively high concentration. A relatively stable sulfenic (HSA-SO3H) acid can be formed in albumin exposed to oxidants. Plasma increases in mixed disulfides (HSA-SSR) or in sulfinic (HSA-SO2H) and sulfonic (HSA-SO3H) acids are associated with different pathologies and may constitute biomarkers of the antioxidant role of the albumin thiol. In this work we provide a critical review of the plasma thiol pool with a focus on human serum albumin.
Sulfenic acid is formed upon oxidation of thiols and is a central intermediate in the redox modulation of an increasing number of proteins. Methods for quantifying or even detecting sulfenic acid are scarce. Herein, the reagent 7-chloro-4-nitrobenz-2-oxa-1,3-diazole was determined not to be suitable as a chromophoric probe for sulfenic acid in human serum albumin (HSA-SOH) because of lack of specificity. Thionitrobenzoate (TNB) reacted with HSA exposed to hydrogen peroxide, but not control or thiol-blocked HSA. The reaction was biphasic. The first phase was approximately 20-fold faster than the second phase and first order in HSA-SOH and TNB (105 +/- 11 M-1 s-1, 25 degrees C, pH 7.4), allowing quantitative data on HSA-SOH formation and reactivity to be obtained. Exposure of reduced HSA (0.5 mM) to hydrogen peroxide (4 mM, 37 degrees C, 4 min) yielded 0.18 +/- 0.02 mol of HSA-SOH per mol of HSA. HSA-SH reacted with hydrogen peroxide at 2.7 +/- 0.7 M-1 s-1 (37 degrees C, pH 7.4), while HSA-SOH reacted at 0.4 +/- 0.2 M-1 s-1, yielding sulfinic acid (HSA-SO2H), as detected by mass spectrometry. The rate constants of HSA-SOH with targets of analytical interest such as dimedone and sodium arsenite were determined. HSA-SOH did not react appreciably with the plasma reductants ascorbate or urate, nor with free basic amino acids. In contrast, HSA-SOH reacted rapidly with the plasma thiols cysteine, glutathione, homocysteine, and cysteinylglycine at 21.6 +/- 0.2, 2.9 +/- 0.5, 9.3 +/- 0.9, and 55 +/- 3 M-1 s-1 (25 degrees C, pH 7.4), respectively, supporting a role for HSA-SOH in the formation of mixed disulfides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.