This is a multicenter prospective observational study that included a large cohort (
n
= 397) of allogeneic (allo‐HSCT; (
n
= 311) and autologous (ASCT) hematopoietic stem cell transplant (
n
= 86) recipients who were monitored for antibody detection within 3–6 weeks after complete severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) vaccination from February 1, 2021, to July 20, 2021. Most patients (
n
= 387, 97.4%) received mRNA‐based vaccines. Most of the recipients (93%) were vaccinated more than 1 year after transplant. Detectable SARS‐CoV‐2‐reactive antibodies were observed in 242 (78%) of allo‐HSCT and in 73 (85%) of ASCT recipients. Multivariate analysis in allo‐HSCT recipients identified lymphopenia < 1 × 10
9
/ml (odds ratio [OR] 0.33, 95% confidence interval [95% CI] 0.16–0.69,
p
= .003), active graft versus host disease (GvHD; OR 0.51, 95% CI 0.27–0.98,
p
= .04) and vaccination within the first year of transplant (OR 0.3, 95% CI 0.15–0.9,
p
= .04) associated with lower antibody detection whereas. In ASCT, non‐Hodgkin's lymphoma (NHL; OR 0.09, 95% CI 0.02–0.44,
p
= .003) and active corticosteroid therapy (OR 0.2, 95% CI 0.02–0.87,
p
= .03) were associated with lower detection rate. We report an encouraging rate of SARS‐CoV‐2‐reactive antibodies detection in these severe immunocompromised patients. Lymphopenia, GvHD, the timing of vaccine, and NHL and corticosteroids therapy should be considered in allo‐HSCT and ASCT, respectively, to identify candidates for SARS‐CoV‐2 antibodies monitoring.
Febrile neutropenia is one of the most serious complications in patients with haematological malignancies and chemotherapy. A prompt identification of infection and empirical antibiotic therapy can prolong survival. This paper reviews the guidelines about febrile neutropenia in the setting of hematologic malignancies, providing an overview of the definition of fever and neutropenia, and categories of risk assessment, management of infections, and prophylaxis.
Background
The clinical efficacy of SARS-CoV-2 vaccines according to antibody response in immunosuppressed patients such as hematological patients has not yet been established.
Patients and methods
A prospective multicenter registry-based cohort study conducted from December 2020 to December 2021 by the Spanish transplant and cell therapy group was used to analyze the relationship of antibody response at 3–6 weeks after full vaccination (2 doses) with breakthrough SARS-CoV-2 infection in 1394 patients with hematological disorders.
Results
At a median follow-up of 165 days after complete immunization, 37 out of 1394 (2.6%) developed breakthrough SARS-CoV-2 infection at median of 77 days (range 7–195) after full vaccination. The incidence rate was 6.39 per 100 persons-year. Most patients were asymptomatic (19/37, 51.4%), whereas only 19% developed pneumonia. The mortality rate was 8%. Lack of detectable antibodies at 3–6 weeks after full vaccination was the only variable associated with breakthrough infection in multivariate logistic regression analysis (Odds Ratio 2.35, 95% confidence interval 1.2–4.6, p = 0.012). Median antibody titers were lower in cases than in non-cases [1.83 binding antibody units (BAU)/mL (range 0–4854.93) vs 730.81 BAU/mL (range 0–56,800), respectively (p = 0.007)]. We identified 250 BAU/mL as a cutoff above which incidence and severity of the infection were significantly lower.
Conclusions
Our study highlights the benefit of developing an antibody response in these highly immunosuppressed patients. Level of antibody titers at 3 to 6 weeks after 2-dose vaccination links with protection against both breakthrough infection and severe disease for non-Omicron SARS-CoV-2 variants.
The long-term clinical efficacy of SARS-CoV-2 vaccines according to antibody response in immunosuppressed patients such as hematological patients has been little explored. A prospective multicenter registry-based cohort study conducted from December 2020 to July 2022 by the Spanish Transplant and Cell Therapy group, was used to analyze the relationship of antibody response over time after full vaccination (at 3–6 weeks, 3, 6 and 12 months) (2 doses) and of booster doses with breakthrough SARS-CoV-2 infection in 1551 patients with hematological disorders. At a median follow-up of 388 days after complete immunization, 266 out of 1551 (17%) developed breakthrough SARS-CoV-2 infection at median of 86 days (range 7–391) after full vaccination. The cumulative incidence was 18% [95% confidence interval (C.I.), 16–20%]. Multivariate analysis identified higher incidence in chronic lymphocytic leukemia patients (29%) and with the use of corticosteroids (24.5%), whereas female sex (15.5%) and more than 1 year after last therapy (14%) were associated with a lower incidence (p < 0.05 for all comparisons). Median antibody titers at different time points were significantly lower in breakthrough cases than in non-cases. A serological titer cut-off of 250 BAU/mL was predictive of breakthrough infection and its severity. SARS-CoV-2 infection-related mortality was encouragingly low (1.9%) in our series. Our study describes the incidence of and risk factors for COVID-19 breakthrough infections during the initial vaccination and booster doses in the 2021 to mid-2022 period. The level of antibody titers at any time after 2-dose vaccination is strongly linked with protection against both breakthrough infection and severe disease, even with the Omicron SARS-CoV-2 variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.