Decomposing a network flow into weighted paths is a problem with numerous applications, ranging from networking, transportation planning, to bioinformatics. In some applications we look for a decomposition that is optimal with respect to some property, such as the number of paths used, robustness to edge deletion, or length of the longest path. However, in many bioinformatic applications, we seek a specific decomposition where the paths correspond to some underlying data that generated the flow. In these cases, no optimization criteria guarantee the identification of the correct decomposition. Therefore, we propose to instead report the
safe
paths, which are subpaths of at least one path in every flow decomposition. In this work, we give the first
local
characterization of safe paths for flow decompositions in directed acyclic graphs, leading to a practical algorithm for finding the
complete
set of safe paths. In addition, we evaluate our algorithm on RNA transcript data sets against a trivial safe algorithm (extended unitigs), the recently proposed safe paths for path covers (TCBB 2021) and the popular heuristic
greedy-width
. On the one hand, we found that besides maintaining perfect precision, our safe and complete algorithm reports a significantly higher coverage (
50
more) compared with the other safe algorithms. On the other hand, the greedy-width algorithm although reporting a better coverage, it also reports a significantly lower precision on complex graphs (for genes expressing a large number of transcripts). Overall, our safe and complete algorithm outperforms (by
20
) greedy-width on a unified metric (F-score) considering both coverage and precision when the evaluated data set has a significant number of complex graphs. Moreover, it also has a superior time (
5
) and space performance (
2
2
2
), resulting in a better and more practical approach for bioinformatic applications of flow decomposition.
Flow network decomposition is a natural model for problems where we are given a flow network arising from superimposing a set of weighted paths and would like to recover the underlying data, i.e., decompose the flow into the original paths and their weights. Thus, variations on flow decomposition are often used as subroutines in multiassembly problems such as RNA transcript assembly. In practice, we frequently have access to information beyond flow values in the form of subpaths, and many tools incorporate these heuristically. But despite acknowledging their utility in practice, previous work has not formally addressed the effect of subpath constraints on the accuracy of flow network decomposition approaches. We formalize the flow decomposition with subpath constraints problem, give the first algorithms for it, and study its usefulness for recovering ground truth decompositions. For finding a minimum decomposition, we propose both a heuristic and an FPT algorithm. Experiments on RNA transcript datasets show that for instances with larger solution path sets, the addition of subpath constraints finds 13% more ground truth solutions when minimal decompositions are found exactly, and 30% more ground truth solutions when minimal decompositions are found heuristically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.