Synthetic gene delivery systems employ multiple functions to enable safe and effective transport of DNA to target cells. Here, we describe metabolite-based poly(L-lysine) (PLL) modifiers that improve transfection by imparting both pH buffering and nanoparticle stabilization functions within a single molecular unit. PLL modifiers were based on morpholine (M), morpholine and niacin (MN), or thiomorpholine (TM). PLL modification with (MN) or (TM) imparted buffering function over the pH range of 5−7 both in solution and live cells and enhanced the stability of PLL DNA nanoparticles, which exhibited higher resistance to polyanion exchange and prolonged blood circulation. These properties translated into increased transfection efficiency in vitro coupled with reduced toxicity compared to unmodified PLL and PLL(M). Furthermore, PEG-PLL(MN) DNA nanoparticles transfected muscle tissue in vivo for >45 days following intramuscular injection. These polymer modifiers demonstrate the successful design of multifunctional units that improve transfection of synthetic gene delivery systems while maintaining biocompatibility.
The molecular mechanisms underlying biological differences between two Leishmania species that cause cutaneous disease, L. major and L. amazonensis, are poorly understood. In L. amazonensis, reactive oxygen species (ROS) signaling drives differentiation of nonvirulent promastigotes into forms capable of infecting host macrophages. Tight spatial and temporal regulation of H2O2 is key to this signaling mechanism, suggesting a role for ascorbate-dependent peroxidase (APX), which degrades mitochondrial H2O2. Earlier studies showed that APX-null L. major parasites are viable, accumulate higher levels of H2O2, generate a greater yield of infective metacyclic promastigotes, and have increased virulence. In contrast, we found that in L. amazonensis, the ROS-inducible APX is essential for survival of all life cycle stages. APX-null promastigotes could not be generated, and parasites carrying a single APX allele were impaired in their ability to infect macrophages and induce cutaneous lesions in mice. Similar to what was reported for L. major, APX depletion in L. amazonensis enhanced differentiation of metacyclic promastigotes and amastigotes, but the parasites failed to replicate after infecting macrophages. APX expression restored APX single-knockout infectivity, while expression of catalytically inactive APX drastically reduced virulence. APX overexpression in wild-type promastigotes reduced metacyclogenesis, but enhanced intracellular survival following macrophage infection or inoculation into mice. Collectively, our data support a role for APX-regulated mitochondrial H2O2 in promoting differentiation of virulent forms in both L. major and L. amazonensis. Our results also uncover a unique requirement for APX-mediated control of ROS levels for survival and successful intracellular replication of L. amazonensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.