Fuzzing is an effective software testing technique to find bugs. Given the size and complexity of real-world applications, modern fuzzers tend to be either scalable, but not effective in exploring bugs that lie deeper in the execution, or capable of penetrating deeper in the application, but not scalable. In this paper, we present an application-aware evolutionary fuzzing strategy that does not require any prior knowledge of the application or input format. In order to maximize coverage and explore deeper paths, we leverage control-and data-flow features based on static and dynamic analysis to infer fundamental properties of the application. This enables much faster generation of interesting inputs compared to an application-agnostic approach. We implement our fuzzing strategy in VUzzer and evaluate it on three different datasets: DARPA Grand Challenge binaries (CGC), a set of real-world applications (binary input parsers), and the recently released LAVA dataset. On all of these datasets, VUzzer yields significantly better results than state-of-the-art fuzzers, by quickly finding several existing and new bugs. Permission to freely reproduce all or part of this paper for noncommercial purposes is granted provided that copies bear this notice and the full citation on the first page. Reproduction for commercial purposes is strictly prohibited without the prior written consent of the Internet Society, the first-named author (for reproduction of an entire paper only), and the author's employer if the paper was prepared within the scope of employment.
Given the increasing impact of Rowhammer, and the dearth of adequate other hardware defenses, many in the security community have pinned their hopes on error-correcting code (ECC) memory as one of the few practical defenses against Rowhammer attacks. Specifically, the expectation is that the ECC algorithm will correct or detect any bits they manage to flip in memory in real-world settings. However, the extent to which ECC really protects against Rowhammer is an open research question, due to two key challenges. First, the details of the ECC implementations in commodity systems are not known. Second, existing Rowhammer exploitation techniques cannot yield reliable attacks in presence of ECC memory.In this paper, we address both challenges and provide concrete evidence of the susceptibility of ECC memory to Rowhammer attacks. To address the first challenge, we describe a novel approach that combines a custom-made hardware probe, Rowhammer bit flips, and a cold boot attack to reverse engineer ECC functions on commodity AMD and Intel processors. To address the second challenge, we present ECCploit, a new Rowhammer attack based on composable, data-controlled bit flips and a novel side channel in the ECC memory controller. We show that, while ECC memory does reduce the attack surface for Rowhammer, ECCploit still allows an attacker to mount reliable Rowhammer attacks against vulnerable ECC memory on a variety of systems and configurations. In addition, we show that, despite the non-trivial constraints imposed by ECC, ECCploit can still be powerful in practice and mimic the behavior of prior Rowhammer exploits.
Cloud providers are concerned that Rowhammer poses a potentially critical threat to their servers, yet today they lack a systematic way to test whether the DRAM used in their servers is vulnerable to Rowhammer attacks. This paper presents an endto-end methodology to determine if cloud servers are susceptible to these attacks. With our methodology, a cloud provider can construct worst-case testing conditions for DRAM.We apply our methodology to three classes of servers from a major cloud provider. Our findings show that none of the CPU instruction sequences used in prior work to mount Rowhammer attacks create worst-case DRAM testing conditions. To address this limitation, we develop an instruction sequence that leverages microarchitectural side-effects to "hammer" DRAM at a near-optimal rate on modern Intel Skylake and Cascade Lake platforms. We also design a DDR4 fault injector that can reverse engineer row adjacency for any DDR4 DIMM. When applied to our cloud provider's DIMMs, we find that DRAM rows do not always follow a linear map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.