The aim of this cohort study was to assess the risk of developing cancer, specifically leukaemia, tumours of the central nervous system and lymphoma, before the age of 15 years in children previously exposed to computed tomography (CT) in Germany. Data for children with at least one CT between 1980 and 2010 were abstracted from 20 hospitals. Cancer cases occurring between 1980 and 2010 were identified by stochastic linkage with the German Childhood Cancer Registry (GCCR). For all cases and a sample of non-cases, radiology reports were reviewed to assess the underlying medical conditions at time of the CT. Cases were only included if diagnosis occurred at least 2 years after the first CT and no signs of cancer were recorded in the radiology reports. Standardised incidence ratios (SIR) using incidence rates from the general population were estimated. The cohort included information on 71,073 CT examinations in 44,584 children contributing 161,407 person-years at risk with 46 cases initially identified through linkage with the GCCR. Seven cases had to be excluded due to signs possibly suggestive of cancer at the time of first CT. Overall, more cancer cases were observed (O) than expected (E), but this was mainly driven by unexpected and possibly biased results for lymphomas. For leukaemia, the SIR (SIR = O/E) was 1.72 (95 % CI 0.89-3.01, O = 12), and for CNS tumours, the SIR was 1.35 (95 % CI 0.54-2.78, O = 7). Despite careful examination of the medical information, confounding by indication or reverse causation cannot be ruled out completely and may explain parts of the excess. Furthermore, the CT exposure may have been underestimated as only data from the participating clinics were available. This should be taken into account when interpreting risk estimates.
Radiation protection is a topic of great public concern and of many scientific investigations, because ionizing radiation is an established risk factor for leukaemia and many solid tumours. Exposure of the public to ionizing radiation includes exposure to background radiation, as well as medical and occupational exposures. A large fraction of the exposure from diagnostic procedures comes from medical imaging. Computed tomography (CT) is the major single contributor of diagnostic radiation exposure. An increase in the use of CTs has been reported over the last decades in many countries. Children have smaller bodies and lower shielding capacities, factors that affect the individual organ doses due to medical imaging. Several risk models have been applied to estimate the cancer burden caused by ionizing radiation from CT. All models predict higher risks for cancer among children exposed to CT as compared to adults. However, the cancer risk associated with CT has not been assessed directly in epidemiological studies. Here, plans are described to conduct an historical cohort study to investigate the cancer incidence in paediatric patients exposed to CT before the age of 15 in Germany. Patients will be recruited from radiology departments of several hospitals. Their individual exposure will be recorded, and time-dependent cumulative organ doses will be calculated. Follow-up for cancer incidence via the German Childhood Cancer Registry will allow computation of standardized incidence ratios using population-based incidence rates for childhood cancer. Dose-response modelling and analyses for subgroups of children based on the indication for and the result of the CT will be performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.