O ICMS (Imposto sobre Circulação de Mercadorias e Prestação de Serviços de Transporte Interestadual e Intermunicipal e de Comunicação) é um dos principais impostos arrecadados pelos estados brasileiros, sendo seu valor importante na gestão e planejamento do governo, em especial para o estado do Rio de Janeiro, que se apresenta em crise econômica e desde o ano 2020 está em Regime de Recuperação Fiscal, necessitando de uma constante atualização da previsão de seus valores de receita e gastos. Devido às incertezas e mudanças externas e internas no estado carioca, a previsão desse valor coletado possui característica de não-linearidade, sendo necessário a aplicação de modelos não lineares que possam considerar essas mudanças nos valores arrecadados ao longo do tempo. Por conseguinte, o trabalho aqui descrito visa utilizar modelos de Redes Neurais Recorrentes Long Short-Term Memory (LSTM) e comparar as abordagens Multivariate Multi-step e Univariate Multi-step, na tentativa de gerar uma previsão anual da arrecadação tributária do estado superior à de outras abordagens, podendo ser utilizados como parâmetros para a tomada de decisões das autoridades governamentais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.