BackgroundUpon activation neutrophil releases microparticles - small plasma membrane vesicles that contain cell surface proteins and cytoplasmic matter, with biological activities. In this study we investigated the potential role of myeloperoxidase in the endothelial cell injury caused by neutrophil-derived microparticles.ResultsMicroparticles were produced by activating human neutrophils with a calcium ionophore and characterized by flow cytometry and transmission and scanning electron microscopy. Myeloperoxidase activity was measured by luminol-dependent chemiluminescence. Neutrophil microparticles-induced injuries and morphological alterations in human umbilical vein endothelial cells (HUVECs) were evaluated by microscopy and flow cytometry. Neutrophil microparticles were characterized as structures bounded by lipid bilayers and were less than 1 μm in diameter. The microparticles also expressed CD66b, CD62L and myeloperoxidase, which are all commonly expressed on the surface of neutrophils, as well as exposition of phosphatidylserine. The activity of the myeloperoxidase present on the microparticles was confirmed by hypochlorous acid detection. This compound is only catalyzed by myeloperoxidase in the presence of hydrogen peroxide and chloride ion. The addition of sodium azide or taurine inhibited and reduced enzymatic activity, respectively. Exposure of HUVEC to neutrophil microparticles induced a loss of cell membrane integrity and morphological changes. The addition of sodium azide or myeloperoxidase-specific inhibitor-I consistently reduced the injury to the endothelial cells. Taurine addition reduced HUVEC morphological changes.ConclusionsWe have demonstrated the presence of active myeloperoxidase in neutrophil microparticles and that the microparticle-associated myeloperoxidase cause injury to endothelial cells. Hence, the microparticle-associated myeloperoxidase-hydrogen peroxide-chloride system may contribute to widespread endothelial cell damage in conditions of neutrophil activation as observed in vasculitis and sepsis.
Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), remains a serious public health problem for which there is no effective treatment in the chronic stage. Intense cardiac fibrosis and inflammation are hallmarks of chronic Chagas disease cardiomyopathy (CCC). Previously, we identified upregulation of circulating and cardiac miR-21, a pro-fibrotic microRNA (miRNA), in subjects with CCC. Here, we explored the potential role of miR-21 as a therapeutic target in a model of chronic Chagas disease. PCR array-based 88 microRNA screening was performed in heart samples obtained from C57Bl/6 mice chronically infected with T. cruzi and serum samples collected from CCC patients. MiR-21 was found upregulated in both human and mouse samples, which was corroborated by an in silico analysis of miRNA-mRNA target prediction. In vitro miR-21 functional assays (gain-and loss-of-function) were performed in cardiac fibroblasts, showing upregulation of miR-21 and collagen expression upon transforming growth factor beta 1 (TGFβ1) and T. cruzi stimulation, while miR-21 blockage reduced collagen expression. Finally, treatment of T. cruzi-infected mice with locked nucleic acid (LNA)-anti-miR-21 inhibitor promoted a significant reduction in cardiac fibrosis. Our data suggest that miR-21 is a mediator involved in the pathogenesis of cardiac fibrosis and indicates the pharmacological silencing of miR-21 as a potential therapeutic approach for CCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.