Haemolytic disease of the fetus and newborn (HDFN) may occur when maternal IgG antibodies against red blood cells (RBCs), often anti-RhD (anti-D) antibodies, cross the placenta and mediate the destruction of RBCs via phagocytic IgG-Fc-receptors (FcγR). Clinical severity is not strictly related to titre and is more accurately predicted by the diagnostically-applied monocyte-based antibody-dependent cellular cytotoxicity (ADCC), a sensitive test with relatively low specificity. This suggests that other factors are involved in the pathogenesis of HDFN. Binding of IgG to FcγR requires the N-linked glycan at position 297 in the IgG-Fc-region, consisting of several different glycoforms. We therefore systematically analysed IgG-derived glycopeptides by mass spectrometry from 70 anti-D IgG1 antibodies purified from the plasma of alloimmunized pregnant women. This revealed a variable decrease in Fc-fucosylation in the majority of anti-D IgG1 (even down to 12%), whereas the total IgG of these patients remained highly fucosylated, like in healthy individuals (>90%). The degree of anti-D fucosylation correlated significantly with CD16 (FcγRIIIa)-mediated ADCC, in agreement with increased affinity of defucosylated IgG to human FcγRIIIa. Additionally, low anti-D fucosylation correlated significantly with low fetal-neonatal haemoglobin levels, thus with increased haemolysis, suggesting IgG-fucosylation to be an important pathological feature in HDFN with diagnostic potential.
RhIG preparations vary in Fc-fucosylation and all demonstrate increased galactosylation. Despite not knowing the exact working mechanism, immunoprophylaxis could perhaps be optimized by selection of donors whose anti-D have low amounts of Fc-fucose, to increase the clearance activity of anti-D preparations, as well as high amounts of galactosylation, for anti-inflammatory effects. Implementing a biologic assay in the standardization of RhIG preparations might be considered.
B cell memory to T cell–dependent (TD) Ags are considered to largely reside in class-switched CD27+ cells. However, we previously observed that anti-RhD (D) Igs cloned from two donors, hyperimmunized with D+ erythrocytes, were predominantly of the IgM isotype. We therefore analyzed in this study the phenotype and frequency of D- and tetanus toxoid–specific B cells by culturing B cells in limiting dilution upon irradiated CD40L-expressing EL4.B5 cells and testing the culture supernatant. Most Ag-specific B cells for both TD Ags were found to reside in the IgM-expressing B cells, including CD27− B cells, in both hyperimmunized donors and nonhyperimmunized volunteers. Only shortly after immunization a sharp increase in Ag-specific CD27+IgG+ B cells was observed. Next, B cells were enriched with D+ erythrocyte ghosts and sorted as single cells. Sequencing of IGHV, IGLV, IGKV, and BCL6 genes from these D-specific B cell clones demonstrated that both CD27−IgM+ and CD27+IgM+ B cells harbored somatic mutations, documenting their Ag-selected nature. Furthermore, sequencing revealed a clonal relationship between the CD27−IgM+, CD27+IgM+, and CD27+IgG+ B cell subsets. These data strongly support the recently described multiple layers of memory B cells to TD Ags in mice, where IgM+ B cells represent a memory reservoir which can re-enter the germinal center and ensure replenishment of class-switched memory CD27+ B cells from Ag-experienced precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.