-A Plackett-Burman experimental design was used to evaluate seven medium components added to molasses (corn steep liquor, sodium acetate, magnesium sulfate, manganese sulfate, ammonium citrate, potassium phosphate and Tween 80). Corn steep liquor (CSL), K 2 HPO 4 and Tween 80 increased lactic acid production. The concentrations of these three components as well as the molasses were further optimized using the response surface method. A maximal lactic acid production of 94.8 g L -1 was obtained when the concentrations of molasses, CSL, K 2 HPO 4 and Tween 80 were 193.50 g L -1 , 37.50 mL L -1 , 2.65 g L -1 and 0.83 mL L -1 , respectively. However, in both shaker and bioreactor, approximately one fourth of the sugar added initially was not utilized after 48 hours of fermentation. Future studies that consider high conversion of sugar into final product as well as high volumetric productivity are necessary to improve the fermentation process and to reduce the downstream costs.
Lactic acid, which can be obtained through fermentation, is an interesting compound because it can be utilized in different fields, such as in the food, pharmaceutical and chemical industries as a bio-based molecule for bio-refinery. In addition, lactic acid has recently gained more interest due to the possibility of manufacturing poly(lactic acid), a green polymer that can replace petroleum-derived plastics and be applied in medicine for the regeneration of tissues and in sutures, repairs and implants. One of the great advantages of fermentation is the possibility of using agribusiness wastes to obtain optically pure lactic acid. The conventional batch process of fermentation has some disadvantages such as inhibition by the substrate or the final product. To avoid these problems, this study was focused on improving the production of lactic acid through different feeding strategies using whey, a residue of agribusiness. The downstream process is a significant bottleneck because cost-effective methods of producing high-purity lactic acid are lacking. Thus, the investigation of different methods for the purification of lactic acid was one of the aims of this work. The pH-stat strategy showed the maximum production of lactic acid of 143.7 g/L. Following purification of the lactic acid sample, recovery of reducing sugars and protein and color removal were 0.28%, 100% and 100%, respectively.
Purpose. The goal of this paper is to describe the green conversion of agricultural waste products, such as molasses and corn steep liquor, into large amounts of D(-) lactic acid using a facilitated multipulse fed-batch strategy and affordable pH neutralizer. This is a very low-cost process because there is no need for hydrolysis of the waste products. The fed-batch strategy increases lactic acid productivity by avoiding inhibition caused by a high initial substrate concentration, and the selected controlling agent prevents cell stress that could be caused by high osmotic pressure of the culture media. Methods. The effects of different carbon and nitrogen sources on lactic acid production were investigated, and the best concentrations of the medium components were determined. To optimize the culture conditions of the Lactobacillus delbrueckii strain, the effects of pH control, temperature, neutralizing agent, agitation, and inoculum size in batch cultures were investigated. Fed-batch strategies were also studied to improve production and productivity. Result. A high titer of D(-) lactic acid (162g/liter) was achieved after 48 hours of fermentation. Productivity at this point was 3.37 g/L·h. The optimum conditions were a temperature of 39°C, pH 5.5 controlled by the addition of Ca(OH)2, agitation at 150 rpm, and inoculum size of 25% (v/v). Conclusion. The production of high optical purity D(-) lactic acid through L. delbrueckii fermentation with molasses and corn steep liquor is a promising economical alternative process that can be performed on the industrial scale.
Sugar concentration from sugarcane juice and yeast autolysate increased lactic acid production more than the other agro-industrial substrates tested. The concentrations of these two components were further optimized using the Plackett-Burman design and response surface method. A second-order polynomial regression model estimated that a maximal lactic acid production of 66.11 g/L would be obtained when the optimal values of sugar and yeast autolysate were 116.9 and 44.25 g/L, respectively. To validate the optimization of the medium composition, studies were carried out using the optimized conditions to confirm the result of the response surface analysis. After 48 h, lactic acid production using the shake-flask method was at 60.2 g/L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.