Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×105 cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.
High glucose (HG) increases angiotensin II (AngII) generation in mesangial cells (MC). Chymase, an alternative AngII-generating enzyme, is upregulated in the glomeruli of diabetic kidneys. In this study, we examined AngII synthesis by human MC via angiotensin-converting enzyme (ACE)-dependent and chymase-dependent pathways under normal glucose (NG, 5 mM) and HG (30 mM) conditions. NG cells expressed ACE and chymase mRNA. Under NG conditions the chymase inhibitor chymostatin reduced AngII levels in cell lysates and in the culture medium, and the ACE inhibitor captopril had no effect. HG induced a 3-fold increase in chymase mRNA and protein but not in ACE mRNA; however, HG induced a 10-fold increase in intracellular ACE activity. The increase in AngII generation induced by HG was found in the cell lysate but not in the culture medium. The rise in intracellular AngII was not prevented by captopril or by chymostatin. Moreover, captopril inhibited extracellular ACE activity but failed to block intracellular ACE activity; these results suggested that captopril was unable to reach intra-cellular ACE. Losartan did not change the intracellular AngII content in either NG or HG conditions, and this lack of change suggested that the increase in AngII was due to intracellular generation. Together these results suggest that chymase may be active in human MC and that both ACE and chymase are involved in increased AngII generation during the HG stimulus by different mechanisms, including an upregulation of chymase mRNA and a rise in intracellular ACE activity, favoring the generation and accumulation of intracellular AngII.
for the BaSICS investigators and the BRICNet members IMPORTANCE Slower intravenous fluid infusion rates could reduce the formation of tissue edema and organ dysfunction in critically ill patients; however, there are no data to support different infusion rates during fluid challenges for important outcomes such as mortality.OBJECTIVE To determine the effect of a slower infusion rate vs control infusion rate on 90-day survival in patients in the intensive care unit (ICU). DESIGN, SETTING, AND PARTICIPANTS Unblinded randomized factorial clinical trial in 75 ICUs in Brazil, involving 11 052 patients requiring at least 1 fluid challenge and with 1 risk factor for worse outcomes were randomized from May 29, 2017, to March 2, 2020. Follow-up was concluded on October 29, 2020. Patients were randomized to 2 different infusion rates (reported in this article) and 2 different fluid types (balanced fluids or saline, reported separately).INTERVENTIONS Patients were randomized to receive fluid challenges at 2 different infusion rates; 5538 to the slower rate (333 mL/h) and 5514 to the control group (999 mL/h). Patients were also randomized to receive balanced solution or 0.9% saline using a factorial design. MAIN OUTCOMES AND MEASURESThe primary end point was 90-day survival.RESULTS Of all randomized patients, 10 520 (95.2%) were analyzed (mean age, 61.1 years [SD, 17.0 years]; 44.2% were women) after excluding duplicates and consent withdrawals. Patients assigned to the slower rate received a mean of 1162 mL on the first day vs 1252 mL for the control group. By day 90, 1406 of 5276 patients (26.6%) in the slower rate group had died vs 1414 of 5244 (27.0%) in the control group (adjusted hazard ratio, 1.03; 95% CI, 0.96-1.11; P = .46). There was no significant interaction between fluid type and infusion rate (P = .98).CONCLUSIONS AND RELEVANCE Among patients in the intensive care unit requiring fluid challenges, infusing at a slower rate compared with a faster rate did not reduce 90-day mortality. These findings do not support the use of a slower infusion rate.
Biological effects of angiotensin II (AngII) such as regulation of AngII target genes may be triggered by interaction of AngII with intracellular AngII receptor types 1 and 2 (AT and AT), defined as intracrine response. The aim of this study was to examine the presence of AT and AT receptors in nuclear membrane of human mesangial cells (HMCs) and evaluate the possible biological effects mediated by intracellular AT through an intracrine mechanism. Subcellular distribution of AT and AT was evaluated by immunofluorescence and by western blot in isolated nuclear extract. Endogenous intracellular synthesis of AngII was stimulated by high glucose (HG). Effects of HG were analyzed in the presence of candesartan, which prevents AngII internalization. Both receptors were found in nuclear membrane. Fluorescein isothiocyanate (FITC)-labeled AngII added to isolated nuclei produced a fluorescence that was reduced in the presence of losartan or PD-123319 and quenched in the presence of both inhibitors simultaneously. HG induced overexpression of fibronectin and increased cell proliferation in the presence of candesartan, indicating an intracrine action of AngII induced by HG. Results showed the presence of nuclear receptors in HMCs that can be activated by AngII through an intracrine response independent of cytoplasmic membrane AngII receptors.
Chymase is an alternative pathway for angiotensin-converting enzyme in angiotensin II (Ang II) formation, and its expression is increased in human diabetic kidneys and in human mesangial cells (MCs) stimulated with high glucose. In addition, chymase activates transforming growth factor (TGF-β1) via an Ang II-independent pathway. The aim of this study was to evaluate the role of chymase on TGF-β1 activation in diabetic rats and in rat MCs (RMCs) stimulated with high glucose (HG). Diabetes was induced in male Wistar rats by streptozotocin (60 mg/kg, intravenous). After 30 (D30) or 60 (D60) days, chymase activity and the expression of profibrotic markers were evaluated. RMCs were stimulated with HG in the presence or absence of 50 μmol/L chymostatin, a chymase inhibitor, or 100 nmol/L of losartan, an Ang II antagonist. Chymase activity and expression increased in D60 kidneys, with increased expression of fibronectin, type I and III collagen, TGF-β1 and Smad 3 and with no change in Smad 7 expression. RMCs exposed to HG presented increases in chymase activity and expression, together with upregulation in fibrosis markers and in the TGF-β1 signaling pathway. All these effects were reversed by chymostatin and by losartan, but type 1 angiotensin II receptor blockade did not interfere with the Smad 3 and 7 pathway. Similar to HG-stimulated RMCs, control RMCs treated with chymase responded with increased expression of TGF-β1, Smad 3 and fibrosis markers. These effects were reversed by chymostatin but not by losartan. The results indicate an important role for chymase in inducing fibrosis through TGF-β1 activation, parallel with Ang II effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.