Ex vivo gene therapy of primary myopathies, based on autologous transplantation of genetically modified myogenic cells, is seriously limited by the number of primary myogenic cells that can be isolated, expanded, transduced, and reimplanted into the patient's muscles. We explored the possibility of using the MyoD gene to induce myogenic conversion of nonmuscle, primary cells in a quantitatively relevant fashion. Primary human and murine fibroblasts from skin, muscle, or bone marrow were infected by an E1-deleted adenoviral vector carrying a retroviral long terminal repeat-promoted MyoD cDNA. Expression of MyoD caused irreversible withdrawal from the cell cycle and myogenic differentiation in the majority (from 60 to 90%) of cultured fibroblasts, as defined by activation of muscle-specific genes, fusion into contractile myotubes, and appearance of ultrastructurally normal sarcomagenesis in culture. 24 h after adenoviral exposure, MyoD -converted cultures were injected into regenerating muscle of immunodeficient (severe combined immunodeficiency/beige) mice, where they gave rise to  -galactosidase positive, centrally nucleated fibers expressing human myosin heavy chains. Fibers originating from converted fibroblasts were indistinguishable from those obtained by injection of control cultures of lacZ -transduced satellite cells. MyoD -converted murine fibroblasts participated to muscle regeneration also in immunocompetent, syngeneic mice. Although antibodies from these mice bound to adenoviral infected cells in vitro, no inflammatory infiltrate was present in the graft site throughout the 3-wk study period. These data support the feasibility of an alternative approach to gene therapy of primary myopathies, based on implantation of large numbers of genetically modified primary fibroblasts massively converted to myogenesis by adenoviral delivery of MyoD ex vivo. ( J. Clin. Invest.
Data found in literature have reported that bacterial endotoxins may be involved in the inflammatory and pathological processes associated with amyloidosis and Alzheimer's disease (AD). In fact, it has been observed that the chronic infusion of the bacterial lipopolysaccharide, the outer cell wall component of Gram negative bacteria, into the fourth ventricle of rats reproduces many of the inflammatory and pathological features seen in the brain of AD patients. In this context, a key player in the pathogenesis of AD is the amyloid-β peptide (Aβ) that is capable of aggregating in fibrils that represent the main component of amyloid plaques. These deposits that accumulate among brain cells are indeed one of the hallmarks of AD. This aggregation in fibrils seems to correlate with Aβ toxic effects. However, recent data have shown that amyloid fibril formation not only results in toxic aggregates but also provides biologically functional molecules; such amyloids have been identified on the surface of fungi and bacteria. The aim of this work was to gain insight into the influence of bacterial endotoxins on Aβ fibrillogenesis; factors that influence fibril formation may be important for Aβ toxic potential. Following three days of incubation at 37°C, Aβ was organized in compact fibrils and the in vitro Aβ fibrillogenesis was potentiated by the Escherichia coli endotoxin. This suggests the importance of infectious events in the pathogenesis of AD and proposes a new aspect related to the putative pathological factors that can be implicated in the mechanisms involved in Aβ25-35 fibrillogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.