BackgroundThe absence of nocturnal blood pressure dipping (ND) identified by 24-h ambulatory blood pressure monitoring (ABPM) correlates with a worse cardiovascular prognosis. The renin–angiotensin system influences blood pressure levels and the occurrence of target organ damage (TOD). Thus, the aim of this study was to correlate the angiotensin-converting enzyme gene (ACE) insertion/deletion (I/D) polymorphism with the 24-h blood pressure profile and TOD in hypertensive individuals.Methods155 non-diabetic hypertensive individuals on antihypertensive treatment underwent ABPM. Peripheral blood samples were drawn for biochemistry and genetic analysis of the ACE I/D polymorphism by polymerase chain reaction. ND was defined as ≥10 % differences in the mean systolic blood pressure (BP) during wakefulness and sleep.ResultsThere were no differences in clinical or biochemical variables or TOD in respect to ND status, except for higher BP levels during sleep (p < 0.001) in non-dippers. There was significant difference in the prevalence of left ventricular hypertrophy (LVH) between ACE genotypes (II: 13.0 %; ID: 34.1 %; DD: 46.5 %; p value = 0.024) with an increased risk in carriers of the DD genotype (OR = 5.80; IC 95 % 1.50–22.44; p value = 0.011). Carriers of the D allele had higher systolic BP during wakefulness and by ABPM (p < 0.05), higher left ventricular mass (117.3 ± 50.0 vs. 100.3 ± 25.7; p value = 0.017) and higher prevalence of LVH (37.4 vs. 12.5 %; OR = 4.14; 95 % IC: 1.17–14.65; p value = 0.028), compared to the II genotype.ConclusionsThe DD genotype is associated with a higher prevalence of LVH. The presence of the D allele appears to be associated with higher mean 24-h and wake systolic BP measured by ABPM in hypertensive patients under antihypertensive treatment.
BackgroundVildagliptin, a DPP-4 inhibitor widely used for the treatment of type 2 diabetes mellitus (T2DM), shows beneficial effects on endothelial function. This study aims to evaluate the effect of vildagliptin on endothelial function and arterial stiffness in patients with T2DM and hypertension.MethodsFifty over 35-year-old patients with T2DM and hypertension, without cardiovascular disease, will be randomly allocated to two groups: group 1 will receive vildagliptin added-on to metformin and group 2, glibenclamide added-on to metformin. Biochemical tests (glycemia, glycated hemoglobin, total cholesterol, high-density lipoprotein cholesterol, triglycerides, creatinine, alanine aminotransferase, ultrasensitive C-reactive protein, and microalbuminuria), 24-h non-invasive ambulatory blood pressure monitoring, and assessment of endothelial function and arterial stiffness will be performed in both groups before and after 12 weeks of treatment. The endothelial function will be assessed by peripheral arterial tonometry, which measures the reactive hyperemia index (vasodilation), and arterial stiffness will be evaluated by applanation tonometry. All analysis will be performed using SPSS Statistical Software. For all analysis, a 2-sided P < 0.05 will be considered statistically significant.ResultsThe study started in December 2013 and patient recruitment is programed until October 2015. The expected results are that vildagliptin will improve the endothelial function in patients with T2DM and hypertension compared to glibenclamide treatment, independently of glycemic control.ConclusionsIt is expected that this DPP-4 inhibitor will improve endothelial function in patients with T2 DM.Trial registration: Clinical Trials NCT02145611, registered on 11 Jun 2013
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.