In social and cultural theory, topology has been used to articulate changes in structures and spaces of power. In this introduction, we argue that culture itself is becoming topological. In particular, this 'becoming topological' can be identified in the significance of a new order of spatio-temporal continuity for forms of economic, political and cultural life today. This ordering emerges, sometimes without explicit coordination, in practices of sorting, naming, numbering, comparing, listing, and calculating. We show that the effect of these practices is both to introduce new continuities into a discontinuous world by establishing equivalences or similitudes, and to make and mark discontinuities through repeated contrasts. In this multiplication of relations, topological change is established as being constant, normal and immanent, rather than being an exceptional form, which is externally produced; that is, forms of economic, political and cultural life are identified and made legible in terms of their capacities for continuous change. Outlining the contributions to this Special Issue, the introduction discusses the meaning of topological culture and provides an analytic framework through which to understand its implications.
The major scab resistance gene Vf, extensively used in apple breeding programs, was recently overcome by the new races 6 and 7 of the fungal pathogen Venturia inaequalis. New, more durable, scab resistance genes are needed in apple breeding programs. F(1) progeny derived from the cross between partially resistant apple cv. Discovery and apple hybrid 'TN10-8' were inoculated in the greenhouse with eight isolates of V. inaequalis, including isolates able to overcome Vf. One major resistance gene, Vg, and seven quantitative trait loci (QTL) were identified for resistance to these isolates. Three QTL on linkage group (LG)12, LG13, and LG15 were clearly isolate-specific. Another QTL on LG5 was detected with two isolates. Three QTL on LG1, LG2, and LG17 were identified with most isolates tested, but not with every isolate. The QTL on LG2 displayed alleles conferring different specificities. This QTL co-localized with the major scab resistance genes Vr and Vh8, whereas the QTL on LG1 colocalized with Vf. These results contribute to a better understanding of the genetic basis of the V. inaequalis-Malus x domestica interaction.
Resistance to scab originating from Malus floribunda clone 821 is the most widely form of resistance used in apple breeding programs. A dominant gene, named Vf, was introgressed from this clone into recent cultivars, although the genetic determinants of the resistance of M. floribunda 821 are apparently more complex than a single gene. The appearance of new races overcoming the resistance of cultivars with the Vf gene, the parental clone, or both made it possible to undertake a genetic analysis of host-pathogen interactions. The segregation of resistance in progenies of crosses from 'Golden Delicious' x M. floribunda 821 and 'Golden Delicious' x 'Idared' into five strains of Venturia inaequalis-races 1 (strains 104, 1093, and 301), 6 (strain 302), and 7 (strain 1066)-demonstrated the existence of a second dominant gene in M. floribunda 821. This gene, independent of Vf, was named Vfh because it seemed to induce a hypersensitive reaction. The results obtained with strain 1066, virulent to M. floribunda 821, allowed identification of another dominant gene, Vg, responsible for the resistance of 'Golden Delicious' to this strain. Vg is also carried by 'Florina', which was selected for its Vf resistance. The pathogenicity of a progeny originating from a cross between V. inaequalis strains 1066 and 301, characterized in vitro on leaf disks of differential genotypes, revealed two independent avirulence genes involved in the pathogenicity toward the Vg and Vf genes, respectively. These avirulence genes were named Avr Vg and Avr Vf. The host-pathogen interactions detected are consistent with a gene-for-gene relationship.
Expanding global trade and the domestication of ecosystems have greatly accelerated the rate of emerging infectious fungal diseases, and host-shift speciation appears to be a major route for disease emergence. There is therefore an increased interest in identifying the factors that drive the evolution of reproductive isolation between populations adapting to different hosts. Here, we used genetic markers and cross-inoculations to assess the level of gene flow and investigate barriers responsible for reproductive isolation between two sympatric populations of Venturia inaequalis, the fungal pathogen causing apple scab disease, one of the fungal populations causing a recent emerging disease on resistant varieties. Our results showed the maintenance over several years of strong and stable differentiation between the two populations in the same orchards, suggesting ongoing ecological divergence following a host shift. We identified strong selection against immigrants (i.e. host specificity) from different host varieties as the strongest and likely most efficient barrier to gene flow between local and emerging populations. Cross-variety disease transmission events were indeed rare in the field and cross-inoculation tests confirmed high host specificity. Because the fungus mates within its host after successful infection and because pathogenicity-related loci prevent infection of nonhost trees, adaptation to specific hosts may alone maintain both genetic differentiation between and adaptive allelic combinations within sympatric populations parasitizing different apple varieties, thus acting as a 'magic trait'. Additional intrinsic and extrinsic postzygotic barriers might complete reproductive isolation and explain why the rare migrants and F1 hybrids detected do not lead to pervasive gene flow across years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.