In this work voltammetric techniques were explored for quantification of α‐Lipoic acid (ALA) using a pyrolytic graphite electrode modified with cobalt phthalocyanine. Cyclic voltammograms recorded in phosphate buffer solution containing 1×10−3 mol L−1 of ALA presented an oxidation peak located at +0.8 V vs. SCE. The modification of the electrode produced a 100 mV shift of the onset oxidation potential to less positive value and a substantial increase in the ALA oxidation current. Among the voltammetric techniques explored, differential pulse voltammetry showed the best performance for quantifications of the analyte in low concentrations. Limits of detection and quantification of ALA obtained corresponds to 3.4×10−9 mol L−1 and 1.2×10−8 mol L−1, respectively.
The use of nanoparticulate systems with action in breast and ovarian cancer has been highlighted in recent years as an alternative to increasing the therapeutic index of conventional anticancer drugs. Thus, nanoparticles have advantageous characteristics in the treatment of cancer. Several nanocarriers of drugs and nanoparticles are described in the literature. The pharmacokinetics of the drugs can be modified by the use of nanocarriers, which in turn facilitate the specific delivery of the drug to the tumour cell. Therefore, the present work is a review that examines some nanosystems with nanoparticles for action in the treatment of breast cancer and ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.