We used a multimodal nonlinear optics microscopy, specifically two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG∕THG) microscopies, to observe pathological conditions of ovarian tissues obtained from human samples. We show that strong TPEF + SHG + THG signals can be obtained in fixed samples stained with hematoxylin and eosin (H&E) stored for a very long time, and that H&E staining enhanced the THG signal. We then used the multimodal TPEF-SHG-THG microscopies in a stored file of H&E stained samples of human ovarian cancer to obtain complementary information about the epithelium∕stromal interface, such as the transformation of epithelium surface (THG) and the overall fibrillary tissue architecture (SHG). This multicontrast nonlinear optics microscopy is able to not only differentiate between cancerous and healthy tissue, but can also distinguish between normal, benign, borderline, and malignant specimens according to their collagen disposition and compression levels within the extracellular matrix. The dimensions of the layers of epithelia can also be measured precisely and automatically. Our data demonstrate that optical techniques can detect pathological changes associated with ovarian cancer.
Hyperglycemia occurs in a variety of conditions such as overt diabetes, gestational diabetes and mild hyperglycemia, all of which are generally defined based on the oral glucose tolerance test and glucose profiles. Whereas diabetes has received considerable attention in recent decades, few studies have examined the mechanisms of mild hyperglycemia and its associated disturbances. Mild gestational hyperglycemia is associated with macrosomia and a high risk of perinatal mortality. Morphologically, the placenta of these women is characterized by an increase in the number of terminal villi and capillaries, presumably as part of a compensatory mechanism to maintain homeostasis at the maternal-fetal interface. In this study, we analised the expression of VEGF and its receptors VEGFR-1 (Flt-1) and VEGFR-2 (KDR) in placentas from mildly hyperglycemic women. This expression was compared with that of normoglycemic women and women with gestational and overt diabetes. Immunohistochemistry revealed strong staining for VEGF and VEGFR-2 in vascular and trophoblastic cells of mildly hyperglycemic women, whereas the staining for VEGFR-1 was discrete and limited to the trophoblast. The pattern of VEGF and VEGF-receptor reactivity in placentas from women with overt diabetes was similar to that of normoglycemic women. In women with gestational diabetes, strong staining for VEGFR-1 was observed in vascular and trophoblastic cells whereas VEGF and VEGFR-2 were detected only in the trophoblast. The expression of these proteins was confirmed by western blotting, which revealed the presence of an additional band of 75 kDa. In the decidual compartment, only extravillous trophoblast reacted with all antibodies. Morphological analysis revealed collagen deposition around large arteries in all groups with altered glycemia. These findings indicate a placental response to altered glycemia that could have important consequences for the fetus. The change in the placental VEGF/VEGFR expression ratio in mild hyperglycemia may favor angiogenesis in placental tissue and could explain the hypercapillarization of villi seen in this gestational disturbance.
Introduction Preeclampsia (PE) is a pregnancy complication associated with increased maternal and perinatal morbidity and mortality. The disease presents with recent onset hypertension (after 20 weeks of gestation) and proteinuria, and can progress to multiple organ dysfunction, with worse outcomes among early onset preeclampsia (EOP) cases (< 34 weeks). The placenta is considered the root cause of PE; it represents the interface between the mother and the fetus, and acts as a macromembrane between the two circulations, due to its villous and vascular structures. Therefore, in pathological conditions, macroscopic and microscopic evaluation can provide clinically useful information that can confirm diagnosis and enlighten about outcomes and future therapeutic benefit. Objective To perform an integrative review of the literature on pathological placental findings associated to preeclampsia (comparing EOP and late onset preeclampsia [LOP]) and its impacts on clinical manifestations. Results: Cases of EOP presented worse maternal and perinatal outcomes, and pathophysiological and anatomopathological findings were different between EOP and LOP placentas, with less placental perfusion, greater placental pathological changes with less villous volume (villous hypoplasia), greater amount of trophoblastic debris, syncytial nodules, microcalcification, villous infarcts, decidual arteriolopathy in EOP placentas when compared with LOP placentas. Clinically, the use of low doses of aspirin has been shown to be effective in preventing PE, as well as magnesium sulfate in preventing seizures in cases of severe features. Conclusion The anatomopathological characteristics between EOP and LOP are significantly different, with large morphological changes in cases of EOP, such as hypoxia, villous infarctions, and hypoplasia, among others, most likely as an attempt to ascertain adequate blood flow to the fetus. Therefore, a better understanding of the basic macroscopic examination and histological patterns of the injury is important to help justify outcomes and to determine cases more prone to recurrence and long-term consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.