Biomedical materials for bone therapy are usually assessed for their biocompatibility and safety employing animal models orin vitromonolayer cell culture assays. However, alternativein vitromodels may offer controlled conditions closer to physiological responses and reduce animal testing. In this work, we developed a 3D spheroidal cell culture with potential to evaluate simultaneously material-cell and cell-cell interactions. Different cell densities of murine MC3T3-E1 preosteoblasts or human primary osteoblasts (HOb) were used to determine the ideal procedure of spheroidal cultures and their adequacy to material testing. Cells were seeded on 96-well plates coated with agar and incubated in agitation from 1 to 7 days. Aggregate morphology was qualitatively evaluated considering the shape, size, repeatability, handling, and stability of spheroids. Higher cell densities induced more stable spheroids, and handling was considered appropriate starting from 2 × 104cells. Confocal microscopy and Scanning Electron Microscopy indicate that most cells within the aggregate core are viable. Exposure to positive controls has shown a dose dependent cell death as measured by XTT assay. Aggregates were stable and presented good viability when employed on standardized testing of metallic and polymer-based biomaterials. Therefore, osteoblast spheroids may provide a promising tool for material screening and biocompatibility testing.
Introduction: Sterilisation using peracetic acid (PAA) has been advocated for orthodontic elastic bands. However, cane-loaded elastomeric ligatures can also become contaminated during processing, packaging, and manipulation before placement in the oral cavity and are therefore susceptible, and possible causes, of cross-contamination. Aim: To test the hypothesis that 0.25% peracetic acid (PAA), following the sterilisation of elastomers, influences the cytotoxicity of elastomeric ligatures on L929 cell lines. Materials and methods: Four hundred and eighty silver elastomeric ligatures were divided into 4 groups of 120 ligatures to produce, Group TP (latex natural, bulk pack, TP Orthodontics), Group M1 (Polyurethane, bulk pack, Morelli), Group M2 (Polyurethane, cane-loaded, Morelli) and Group U (Polyurethane, cane-loaded, Uniden). Of the 120 ligatures in each group, 100 were sterilised in 0.25% PAA at time intervals (N = 20) of 1 hour, 2 hours, 3 hours, 4 hours and 5 hours. The 20 remaining elastomeric ligatures in each group were not sterilised and served as controls. Cytotoxicity was assessed using L929 cell lines and a dye-uptake method. Analysis of variance (ANOVA), followed by the Tukey post hoc test (p < 0.05) determined statistical relevance. Results: There was a significant difference between TP, Morelli and Uniden elastomerics (p < 0.05), but no difference between the two types of Morelli elastomerics at the 1 hour time interval. In addition, there was a significant difference between Group CC and the other groups assessed, except between Groups CC and TP at the 1 hour time interval. The non-sterilised elastomeric ligatures showed similar cell viability to that observed after 1 hour of standard sterilisation. Conclusion: PAA did not significantly influence the cytotoxicity of elastomeric ligatures after a sterilisation time of 1 hour and is therefore recommended for clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.