Background Expiratory flow limitation and lung hyperinflation promote cardiocirculatory perturbations that might impair O 2 delivery to locomotor muscles in patients with chronic obstructive pulmonary disease (COPD). The hypothesis that decreases in lung hyperinflation after the inhalation of bronchodilators would improve skeletal muscle oxygenation during exercise was tested. Methods Twelve non-or mildly hypoxaemic males (forced expiratory volume in 1 s (FEV 1 )¼38.5612.9% predicted; PaO 2 >60 mm Hg) underwent constant work rate cycle ergometer exercise tests (70e80% peak) to the limit of tolerance (Tlim)
Impaired O(2) delivery relative to O(2) demands at the onset of exercise might influence the response profile of muscle fractional O(2) extraction (≅Δ[deoxy-Hb/Mb] by near-infrared spectroscopy) either by accelerating its rate of increase or creating an "overshoot" (OS) in patients with pulmonary arterial hypertension (PAH). We therefore assessed the kinetics of O(2) uptake [Formula: see text] Δ[deoxy-Hb/Mb] in the vastus lateralis, and heart rate (HR) at the onset of heavy-intensity exercise in 14 females with PAH (connective tissue disease, IPAH, portal hypertension, and acquired immunodeficiency syndrome) and 11 age- and gender-matched controls. Patients had slower [Formula: see text] and HR dynamics than controls (τ[Formula: see text] = 62.7 ± 15.2 s vs. 41.0 ± 13.8 s and t (1/2)-HR = 61.3 ± 16.6 s vs. 43.4 ± 8.8 s, respectively; p < 0.01). No study participant had a significant reduction in oxyhemoglobin saturation. In OS(-) subjects (6 patients and 7 controls), the kinetics of Δ[deoxy-Hb/Mb] relative to [Formula: see text] were faster in patients (p = 0.05). Larger area under the OS and slower kinetics (MRT) of the "downward" component indicated greater O(2) delivery-to-utilization mismatch in OS(+) patients versus OS(+) controls (477.4 ± 330.0 vs. 78.1 ± 65.6 a.u. and 74.6 ± 18.8 vs. 46.0 ± 17.0 s, respectively; p < 0.05). Resting pulmonary vascular resistance was higher in OS(+) than OS(-) patients (23.1 ± 12.0 vs. 10.7 ± 4.0 Woods, respectively; p < 0.05). We conclude that microvascular O(2) delivery-to-utilization inequalities slowed the rate of adaptation of aerobic metabolism at the start of heavy-intensity exercise in women with PAH.
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(VCW) = rib cage (VRC) + abdomen (VAB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) VCW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of VCW regulation as EEVCW increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEVAB decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) VCW (P < 0.05). In contrast, decreases in EEVCW in the “non-hyperinflators” were due to the combination of stable EEVRC with marked reductions in EEVAB. These patients showed lower EIVCW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIVCW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.