Isolated noncompaction of the left ventricular myocardium (INVM) is characterized by the presence of numerous prominent trabeculations and deep intertrabecular recesses within the left ventricle, sometimes also affecting the right ventricle and interventricular septum. Familial occurrence of this disorder was described previously. We present a family in which 6 affected individuals demonstrated X-linked recessive inheritance of this trait. Affected relatives presented postnatally with left ventricular failure and arrhythmias, associated with the pathognomonic echocardiographic findings of INVM. The usual findings of Barth syndrome (neutropenia, growth retardation, elevated urinary organic acids, low carnitine levels, and mitochondrial abnormalities) were either absent or found inconsistently. Fetal echocardiograms obtained between 24-30 weeks of gestation in 3 of the affected males showed a dilated left ventricle in one heart, but were not otherwise diagnostic of INVM in any of the cases. Four of the affected individuals died during infancy, one is in cardiac failure at age 8 months, and one is alive following cardiac transplant at age 9 months. The hearts from infants who died or underwent transplantation appeared, on gross examination, to be enlarged, with coarse, deep ventricular trabeculations and prominent endocardial fibroelastosis. Histologically, there were loosely organized fascicles of myocytes in subepicardial and midmyocardial zones of both ventricles, and the myocytes showed thin, often angulated fibers with prominent central clearing and reduced numbers of filaments. Markedly elongated mitochondria were present in some ventricular myocytes from one specimen, but this finding was not reproducible. Genetic linkage analysis has localized INVM to the Xq28 region, where other myopathies with cardiac involvement have been located.
Isolated noncompaction of the left ventricular myocardium (INVM) is characterized by the presence of numerous prominent trabeculations and deep intertrabecular recesses within the left ventricle, sometimes also affecting the right ventricle and interventricular septum. Familial occurrence of this disorder was described previously. We present a family in which 6 affected individuals demonstrated X-linked recessive inheritance of this trait. Affected relatives presented postnatally with left ventricular failure and arrhythmias, associated with the pathognomonic echocardiographic findings of INVM. The usual findings of Barth syndrome (neutropenia, growth retardation, elevated urinary organic acids, low carnitine levels, and mitochondrial abnormalities) were either absent or found inconsistently. Fetal echocardiograms obtained between 24-30 weeks of gestation in 3 of the affected males showed a dilated left ventricle in one heart, but were not otherwise diagnostic of INVM in any of the cases. Four of the affected individuals died during infancy, one is in cardiac failure at age 8 months, and one is alive following cardiac transplant at age 9 months. The hearts from infants who died or underwent transplantation appeared, on gross examination, to be enlarged, with coarse, deep ventricular trabeculations and prominent endocardial fibroelastosis. Histologically, there were loosely organized fascicles of myocytes in subepicardial and midmyocardial zones of both ventricles, and the myocytes showed thin, often angulated fibers with prominent central clearing and reduced numbers of filaments. Markedly elongated mitochondria were present in some ventricular myocytes from one specimen, but this finding was not reproducible. Genetic linkage analysis has localized INVM to the Xq28 region, where other myopathies with cardiac involvement have been located.
SummaryBackground: The diagnosis of rheumatic fever is based on physical findings (major) and supporting laboratory evidence (minor) as defined by the Jones criteria. Rheumatic carditis is characterized by auscultation of a mitral regurgitant murmur. Doppler echocardiography, however, may detect mitral regurgitation when there is no murmur ("silent" mitral regurgitation), even in normal individuals.Hypothesis: The hypothesis of this study was that physiologic mitral regurgitation can be differentiated from pathologic "silent" mitral regurgitation by Doppler echocardiography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.