System identification consists of the development of techniques for model estimation from experimental data, demanding no previous knowledge of the process. Aeroelastic models are directly influence of the benefits of identification techniques, basically because of the difficulties related to the modelling of the coupled aero- and structural dynamics. In this work a comparative study of the bilinear dynamic identification of a helicopter blade aeroelastic response is carried out using artificial neural networks is presented. Two neural networks architectures are considered in this study. Both are variations of static networks prepared to accomodate the system dynamics. A time delay neural networks (TDNN) for response prediction and a typical recurrent neural networks (RNN) are used for the identification. The neural networks have been trained by Levemberg-Marquardt algorithm. To compare the performance of the neural networks models, generalization tests are produced where the aeroelastic responses of the blade in flapping and torsion motions at its tip due to noisy pitching angle are presented. An analysis in frequency of the signals from simulated and the emulated models are presented. In order to perform a qualitative analysis, return maps with the simulation results generated by the neural networks are presented
Agradeço a Deus por tudo que fez e faz por núm, em todos os momentos de minha vida. Ao meu orientador Prof. Dr. Eduardo Morgado Belo pela orientação e pela paciência nos momentos difíceis. Ao Prof. Dr. Flávio pela paciência, amizade e pelas importantes contribuições no desenvolvimento do trabalho todo. Ao Prof. Dr. Zhao Liang pelas contribuições valiosas ao trabalho. Aos meus pais novamente e aos meus irmãos José Ariovaldo, Fernanda e João Paulo pelo estúnulo e carinho dedicados. A Kelen, a Gi, desde a graduação, e a Luciana por toda amjzade e dedicação. Não tenho palavras para agradecê-las, por tudo que fizeram por mim desde quando retornei. Que Deus as abençoe muito! Agradeço também a Kelen pelas importantes dicas dadas no trabalho com as redes neurais. Ao Carlos Demarqui por toda a amizade, paciência e ajuda quando precisei. Ao Édson por toda a amizade e ajuda no trabaU10 com as redes neurais e no Matlab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.