Glyphosate is a broad-spectrum organophosphate (OP) herbicide, highly soluble in water, and when applied in terrestrial systems it penetrates into soil, eventually reaching the aquatic community and affecting nontarget organisms. The aim of this study was to evaluate the toxicity of glyphosate on ovaries of zebrafish (Danio rerio). Ovaries (n = 18 per triplicate) were exposed to 65 μg/L of glyphosate [N-(phosphonomethyl) glycine] for 15 d. This concentration was determined according to Resolution 357/2005/CONAMA/Brazil, which establishes the permissible concentration of glyphosate in Brazilian inland waters. Nonexposed ovaries (n = 18 per triplicate) were used as control. Subsequently, morphology and expression of steroidogenic factor-1 (SF-1) of exposed and nonexposed ovaries was determined. No apparent changes were noted in general morphology of exposed and nonexposed ovaries. However, a significant increase in diameter of oocytes was observed after exposure to glyphosate. When ovarian ultrastructure was examined the presence of concentric membranes, appearing as myelin-like structures, associated with the external membranes of mitochondria and with yolk granules was found. After glyphosate exposure, immunohistochemistry and immunoblotting revealed greater expression of SF-1 in the oocytes, which suggests a relationship between oocyte growth and SF-1 expression. These subtle adverse effects of glyphosate on oocytes raised a potential concern for fish reproduction. These results contribute to understanding glyphosate-induced toxicity to nontarget organisms, showing subcellular and molecular impairments that may affect reproduction in +female fish.
Roundup is a glyphosate-based herbicide (GBH) widely used in agriculture and may cause toxic effects in non-target organisms. Model organisms, as zebrafish, and analysis of gene expression by reverse transcription-quantitative PCR (RT-qPCR) could be used to better understand the Roundup toxicity. A prerequisite for RT-qPCR is the availability of appropriate reference genes; however, they have not been described for Roundup-exposed fish. The aim of this study was to evaluate the expression stability of six reference genes (rpl8, β-act, gapdh, b2m, ef1α, hprt1) and one expressed repetitive element (hatn10) in organs of males (brain, gill, testis) and females (ovary) of zebrafish exposed to Roundup WG at three concentrations (0.065, 0.65 and 6.5 mg N-(phosphonomethyl) glycine/l) for 7 days. Genes were ranked by geNorm, NormFinder, BestKeeper, Delta C t and RefFinder, and their best combinations were determined by geNorm and NormFinder programs. The two most stable ranked genes were specific to each organ: gill (β-act; rpl8); brain (rpl8; β-act); testis (ef1α; gapdh); and ovary (rpl8; hprt1). The cat transcript level was used to evaluate the effect of normalization with these reference genes. These are the first suitable reference genes described for the analysis of gene expression in organs of Roundup-exposed zebrafish, and will allow investigations of the molecular mechanisms of Roundup toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.