Responses to anaesthesia with essential oil (EO) of Aloysia triphylla (135 and 180 mg L−1) and tricaine methanesulfonate (MS222) (150 and 300 mg L−1) were assessed in silver catfish. Exposure to the anaesthetics elicited a stress response in the species. In the case of MS222, it was displayed as a release of cortisol into bloodstream, elevation in hematocrit and plasma ion loss. The EO presented cortisol‐blocking properties, but increased haematocrit and disturbances of hydromineral balance were observed. Liver antioxidant/oxidant status of EO and MS222‐anaesthetized silver catfish was also estimated. The synthetic anaesthetic induced lipoperoxidation, notwithstanding increased catalase contents, whereas the naturally occurring product was capable of preventing the formation of lipid peroxides, possibly due to combined actions of catalase and glutathione‐S‐transferase. Anaesthetic efficacy was also tested via induction and recovery times. Overall, the promising results obtained for the physiological parameters of the EO‐treated fish counterbalanced the slight prolonged induction time observed for 180 mg L−1. As for 135 mg L−1, both induction and recovery times were lengthy; despite that, the EO was able to promote oxidative protection and mitigate stress. None of the MS222 concentrations prompted such responses concomitantly.
Anaesthetic substances are necessary to reduce fish stress during aquaculture activities. The objectives of this study were: (i) to determine the efficacy of essential oils (EOs) of Myrcia sylvatica (EOMS) and Curcuma longa (EOCL) as anaesthetics for Colossoma macropomum and (ii) to evaluate the effects of rapid anaesthesia and long-term sedation (6 h) with these oils. Therefore, the main primary stress indicator (cortisol) and secondary factors (biochemical indices, hepatic metabolism, oxidative biomarkers) were measured. Sedation with the EOCL resulted in lower cortisol levels compared to control group. Total cholesterol levels were lower in fish sedated with EOMS than in control. Lactate levels were higher in fish anaesthetized with both EOs and sedated with EOCL compared to control. Both EOs increased hepatic glycogen levels after anaesthesia and EOMS increased this parameter after sedation compared to control. Anaesthesia and sedation with EOs resulted in lower levels of lipid peroxidation (LPO) compared to control. In turn, the activity of some antioxidant enzymes evaluated (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase), the content of non-protein thiols and total reactive antioxidant potential were higher in tissues of fish anaesthetized and sedated with EOs compared to control. This induction of antioxidant capacity in the tissues could be due to the antioxidant property exerted by these EOs. Thus, EOMS and EOCL are recommended for anaesthesia and sedation of fish because in spite of inducing anaerobic metabolism, these EOs did not alter most biochemical parameters, reduced the LPO and increased the antioxidant capacity in vital tissues.
Fumonisins (FBs) and zearalenone (ZEN) are mycotoxins which occur naturally in grains and cereals, especially maize, causing negative effects on animals and humans. Along with the need for constant monitoring, there is a growing demand for rapid, non-destructive methods. Among these, Near Infrared Spectroscopy (NIR) has made great headway for being an easy-to-use technology. NIR was applied in the present research to quantify the contamination level of total FBs, i.e., fumonisin B1+fumonisin B2 (FB1+FB2), and ZEN in Brazilian maize. From a total of six hundred and seventy-six samples, 236 were analyzed for FBs and 440 for ZEN. Three regression models were defined: one with 18 principal components (PCs) for FB1, one with 10 PCs for FB2, and one with 7 PCs for ZEN. Partial least square regression algorithm with full cross-validation was applied as internal validation. External validation was performed with 200 unknown samples (100 for FBs and 100 for ZEN). Correlation coefficient (R), determination coefficient (R2), root mean square error of prediction (RMSEP), standard error of prediction (SEP) and residual prediction deviation (RPD) for FBs and ZEN were, respectively: 0.809 and 0.991; 0.899 and 0.984; 659 and 69.4; 682 and 69.8; and 3.33 and 2.71. No significant difference was observed between predicted values using NIR and reference values obtained by Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS), thus indicating the suitability of NIR to rapidly analyze a large numbers of maize samples for FBs and ZEN contamination. The external validation confirmed a fair potential of the model in predicting FB1+FB2 and ZEN concentration. This is the first study providing scientific knowledge on the determination of FBs and ZEN in Brazilian maize samples using NIR, which is confirmed as a reliable alternative methodology for the analysis of such toxins.
(+)-Dehydrofukinone (DHF) is a major component of the essential oil of Nectandra grandiflora (Lauraceae), and exerts a depressant effect on the central nervous system of fish. However, the neuronal mechanism underlying DHF action remains unknown. This study aimed to investigate the action of DHF on GABAA receptors using a silver catfish (Rhamdia quelen) model. Additionally, we investigated the effect of DHF exposure on stress-induced cortisol modulation. Chemical identification was performed using gas chromatography-mass spectrometry and purity was evaluated using gas chromatography with a flame ionization detector. To an aquarium, we applied between 2.5 and 50 mg/L DHF diluted in ethanol, in combination with 42.7 mg/L diazepam. DHF within the range of 10-20 mg/L acted collaboratively in combination with diazepam, but the sedative action of DHF was reversed by 3 mg/L flumazenil. Additionally, fish exposed for 24 h to 2.5-20 mg/L DHF showed no side effects and there was sustained sedation during the first 12 h of drug exposure with 10-20 mg/L DHF. DHF pretreatment did not increase plasma cortisol levels in fish subjected to a stress protocol. Moreover, the stress-induced cortisol peak was absent following pretreatment with 20 mg/L DHF. DHF proved to be a relatively safe sedative or anesthetic, which interacts with GABAergic and cortisol pathways in fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.