One contribution of 12 to a Special Feature on 'Global change and biodiversity: future challenges'.
Of the four species of Bulinus found on Madagascar, three species: B. obtusispira, B. liratus and B. bavayi are endemic while the fourth, B. forskalii, is probably a recent introduction from the African mainland. The evolutionary relationships of these species with Bulinus species from Africa were studied by phylogenetic analysis of DNA sequence variation at two mitochondrial loci: cytochrome oxidase subunit I (COI) and large ribosomal subunit (LSU) or 16S. The observed levels of nucleotide divergence within Bulinus were substantial but may underestimate the true levels as there was evidence of 'saturation' of transitional substitutions at both loci. A putative secondary structure model for the sequenced segment of the 16S was developed. Subsequent phylogenetic analysis using transversional changes only for both loci, showed that there were contrasting levels of divergence within the four species groups. B. obtusispira was consistently placed within the B. africanus group, appearing ancestral to this group and was closest to the basal node within Bulinus. Together with B. bavayi, the two species appear to have been isolated on Madagascar for a long time, contrasting with both B. liratus and B. forskalii that appear more recent colonisers; however, estimate of exact times of divergence is problematic. A PCR-RFLP assay was developed to enable identification and discrimination of B. obtusispira and B. liratus using discriminatory variation within the COI. To enable population genetic analysis within B. obtusispira, microsatellite markers were developed using an enrichment method and 8 primer pairs are reported. Laboratory infection experiments using Madasgacan S. haematobium from the Mahabo area showed that certain populations of B. obtusispira, B. liratus and B. bavayi were compatible.
Recent characterization of nuclear ribosomal small subunit (SSU) genes has shown that variant nucleotides within this region could be useful for species and species group identi®cation within the genus Lymnaea (Gastropoda: Lymnaeidae). This study aimed to characterize a range of populations of Lymnaea natalensis Krauss, 1848 on Madagascar, and addressed two related questions. First, is there any evidence of intraspeci®c variation of the SSU and, if so, what might be its signi®cance? Secondly, might this variation jeopardize the use of SSU for lymnaeid taxonomy and phylogeny? Lymnaea natalensis (n = 212) was collected from 17 sampling localities, spanning the northern and southern ends of the island. Variation within a selected region of the SSU known to vary between species, the V1 and V2, was assayed by polymerase chain reaction (PCR) linked restriction fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE) analysis. The PCR-RFLP pro®les indicated a striking dimorphism across populations at two restriction site loci (CfoI & MspI) within the E10-1 helix of the V2 region. The observed RFLP variation was con®rmed by direct sequencing and by genomic digestion with subsequent hybridization. Putative heterozygotes were also encountered and in these individuals the SSU arrays composed of two distinct types approximately 1% divergent. A severe departure from Hardy±Weinberg equilibrium with a highly statistically signi®cant ( P < 10 -5 ) heterozygote de®ciency was found and genetic variation among populations was highly structured (F st = 0.53). The geographic distribution of the variants was mapped, revealing that one variant was restricted to higher, predominately colder environments and was thought to be an adaptation. The molecular basis of the SSU variation was caused by single nucleotide polymorphisms (SNPs). To test for the possibility of cryptic taxa, an analysis of individuals representative of the SSU variant types with isoenzyme analysis (ISA), randomly ampli®ed polymorphic DNA (RAPDs) and PCR-RFLP analysis of the ribosomal Internal Transcribed Spacer (ITS) was performed. Little variation was revealed and none that correlated to the groups suggested by SSU, con®rming that the SSU variation was intraspeci®c. The levels of intraspeci®c divergence of the V1 and V2 within Lymnaea were not appreciably different (1%) from interspeci®c and would therefore question the validity of these data for lymnaeid taxonomy and phylogeny.
BackgroundSchistosomiasis affects more than 800 million people, mostly in sub-Saharan Africa. A baseline sentinel site study was conducted in the Western half of Madagascar to determine the prevalence and intensity of schistosomiasis and soil-transmitted helminth (STH) infections prior to mass drug administration, and to explore the associations between infection and school attendance, and access to water, sanitation and hygiene (WASH) facilities.MethodsA three-stage, cluster-randomised cross-sectional study was conducted in 29 sentinel sites in October 2015. Twenty school attending and 4 non-attending children in each of the age groups from 7 to 10 years old were randomly selected at each site for detection of Schistosoma haematobium eggs in a single urine slide by filtration, and of S. mansoni, Ascaris lumbricoides, Trichuris trichiura and hookworm eggs in duplicate Kato-Katz slides from a single stool sample. School attendance was registered individually, and school-level access to WASH facilities was scored through pre-defined observed and reported factors. Logistic regression analysis was performed, adjusting for gender, age and study site. School-level WASH status was analysed using Spearman’s rank correlation coefficient.ResultsA total of 1,958 children were included. The prevalence of S. haematobium infection and heavy-intensity infection was 30.5 % and 15.1 %, respectively. The prevalence of S. mansoni infection and heavy-intensity infection was 5.0 % and 0.9 %, respectively. The prevalence of any STH infection was 4.7 %. There was no significant difference in prevalence of infection or heavy-intensity infection of either schistosome species between attending and non-attending children, apart from heavy-intensity S. mansoni infection that was significantly more common in children who did not attend school regularly (aOR = 7.5 (95 % CI = 1.1-49.5); p = 0.037). Only a minority of schools had adequate access to WASH facilities, and in this study, we found no significant association between school-level WASH status and schistosomiasis.ConclusionsThis study found an alarmingly high prevalence and intensity of schistosomiasis, and the results warrant urgent scale-up of the national NTD control programme that will need to include both non-attending and attending school-age children in order to reach WHO roadmap targets for the control of schistosomiasis by 2020.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1337-4) contains supplementary material, which is available to authorized users.
The importance of ecosystems for supporting human well-being is increasingly recognized by both the conservation and development sectors. Our ability to conserve ecosystems that people rely on is often limited by a lack of spatially explicit data on the location and distribution of ecosystem services (ES), the benefits provided by nature to people. Thus there is a need to map ES to guide conservation investments, to ensure these co-benefits are maintained. To target conservation investments most effectively, ES assessments must be rigorous enough to support conservation planning, rapid enough to respond to decision-making timelines, and often must rely on existing data. We developed a framework for rapid spatial assessment of ES that relies on expert and stakeholder consultation, available data, and spatial analyses in order to rapidly identify sites providing multiple benefits. We applied the framework in Madagascar, a country with globally significant biodiversity and a high level of human dependence on ecosystems. Our objective was to identify the ES co-benefits of biodiversity priority areas in order to guide the investment strategy of a global conservation fund. We assessed key provisioning (fisheries, hunting and non-timber forest products, and water for domestic use, agriculture, and hydropower), regulating (climate mitigation, flood risk reduction and coastal protection), and cultural (nature tourism) ES. We also conducted multi-criteria analyses to identify sites providing multiple benefits. While our approach has limitations, including the reliance on proximity-based indicators for several ES, the results were useful for targeting conservation investments by the Critical Ecosystem Partnership Fund (CEPF). Because our approach relies on available data, standardized methods for linking ES provision to ES use, and expert validation, it has the potential to quickly guide conservation planning and investment decisions in other data-poor regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.