O crescimento urbano na perspectiva de território e população se tornou uma das maiores preocupações deste século. Em função deste fenômeno, órgãos de planejamento e gestão de transporte público do país buscam ofertar um serviço de qualidade baseado em um sistema otimizado da rede de transporte. Entender a demanda de passageiros constitui-se como uma tarefa fundamental deste processo. Assim, o método proposto neste trabalho prevê a determinação da demanda de volume de passageiros de forma automatizada a partir de dados de posicionamento GNSS (Global Navigation Satellite System) fornecidos por uma plataforma IoT (Internet of Things). O trabalho tem por objetivo identificar variações de demanda de passageiros, a partir do uso de mapas de densidade, e otimizar rotas do serviço de transporte público, tendo a Universidade Estadual de Campinas como área de estudo. Experimentos foram realizados a partir de uma das rotas que compreendem o sistema de transporte da Universidade. Os resultados foram satisfatórios, pois apresentaram uma redução de 1,43 km em relação ao percurso realizado pela rota original, representando um impacto financeiro inicial de aproximadamente 18% de redução do custo total anual com a contratação de serviço de transporte. Portanto, o método apresenta-se como uma alternativa viável para obtenção de dados fundamentais para tarefa de roteirização para as linhas de ônibus do campus, podendo ser replicado para os demais trajetos que compõem o sistema de transporte público da Universidade.
Coffee production is an activity of great economic and social importance in Brazil. This agribusiness segment stands out in the economy of small cities in southern Minas Gerais, as it involves family farming and the permanence of the rural population in the countryside. This study aimed to contribute and adapt geotechnology-based methods for the remote mapping of coffee and the strengthening of the permanence of this population, providing an online platform to simulate coffee trading. The municipality of Inconfidentes/MG was the study area. Orbital images of the Sentinel-2A satellite were used in the development of the study. Images were classified in a supervised way with the random forest classifier in Google Earth Engine (GEE) and later used as a data source in the online platform developed in the Application Programming Interface (API) Leaflet to simulate coffee trading involving the cryptocurrency Coffee Coin. Results allowed the identification and mapping of coffee growing areas by remote sensing and, also, to demonstrate that the online platform can help in the planning of new investments in coffee production, in addition to presenting an overview of the economic importance of coffee to the municipality.
GNSS integrity assessment has always been linked to the need for reliable positional information. Initially used in aviation, positional information gained even more relevance in terrestrial applications with the popularity of GNSS. However, the terrestrial environment has many influences over GNSS signals, which reduces the positional quality of tracking objects. Advances have been achieved in the use of integrity monitoring algorithms, but there are limitations to their use, especially those concerning positional accuracy in urban environments with low-cost devices. This paper aims to discuss a comparative method using two low-cost GNSS receivers designed for transportation applications and to verify whether this method can evaluate positional quality in pre-established locations, as well as the possibilities of using these devices for transportation applications, considering the positional error. Results show that, in the static experiment, the receiver assembled with a GPS antenna active embedded was more accurate than the receiver assembled with an external antenna, presenting better values in 5 out of 10 evaluated sites, while the external antenna performed better in only 2 sites. However, in a kinematic evaluation, the receiver assembled with an external antenna provided better results when considering positional error as assessment criterion, resulting in values less than or equal to 8 meters in 99.7% of the route evaluated, while the embedded antenna had 95.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.