Neopterin is produced by human and primate monocyte/macrophages upon activation by pro-inflammatory stimuli like Th1-type cytokine interferon-gamma. Neopterin has pro-oxidative properties, which have been demonstrated in vitro in physicochemical and cell culture studies and also in in vivo experiments, e.g. the Langendorff perfusion model of rat hearts. In the past several years, the measurement of neopterin concentrations in body fluids including serum, urine and cerebrospinal fluid has revealed a potential role of this molecule in the prediction of long-term prognosis in both patients with cancer and those with systemic infections such as HIV-1 infection. Moreover, elevated neopterin concentrations have been reported in patients with coronary disease compared to controls and in recent years it has become apparent that increased neopterin concentrations are an independent marker for cardiovascular disease and a predictor of future cardiovascular events in patients with coronary artery disease. Current data suggest that the diagnostic performance of neopterin testing is comparable to that of well established biomarkers such as C-reactive protein and cholesterol plasma levels. The present article reviews the role of neopterin in the pathogenesis of cardiovascular disease and as a marker of coronary artery disease progression.
The MARIA randomized trial evaluated the efficacy and safety of melatonin for the reduction of reperfusion injury in patients undergoing revascularization for STelevation myocardial infarction (STEMI). This was a prespecified interim analysis.A total of 146 patients presenting with STEMI within 6 hours of chest pain onset were randomized to receive intravenous and intracoronary melatonin (n=73) or placebo (n=73) during primary percutaneous coronary intervention (PPCI). Primary endpoint was myocardial infarct size as assessed by magnetic resonance imaging (MRI) at 6 ± 2 days. Secondary endpoints were changes in left ventricular volumes and ejection fraction (LVEF) at 130 ± 10 days post-PPCI and adverse events during the first year. No significant differences in baseline characteristics were observed between groups. MRI was performed in 108 patients (86.4%). Myocardial infarct size by MRI evaluated 6 ± 2 days post-PPCI, did not differ between melatonin and placebo groups (P=.63). Infarct size assessed by MRI at 130 ± 10 days post-PPCI, performed in 91 patients (72.8%), did not show statistically significant differences between groups (P=.27). The recovery of LVEF from 6 ± 2 to 130 ± 10 days post-PPCI was greater in the placebo group (60.0 ± 10.4% vs 53.1 ± 12.5%, P=.008).Both left ventricular end-diastolic and end-systolic volumes were lower in the placebo group (P=.01). The incidence of adverse events at 1 year was comparable in both groups (P=.150). Thus, in a nonrestricted STEMI population, intravenous and intracoronary melatonin was not associated with a reduction in infarct size and has an unfavourable effect on the ventricular volumes and LVEF evolution. Likewise, there is lack of toxicity of melatonin with the doses used.
K E Y W O R D Sacute myocardial infarction, heart ischaemia-reperfusion injury, infarct size, melatonin, mitochondria, primary angioplasty MARIA Investigators group members are in Appendix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.