Moderate/severe PREP was independently associated with age, group of teeth, location, preoperative swelling, retreatments and pulp and periapical status. No demographic, medical or dental variable predicted moderate/severe POEP following RCT amongst this subpopulation.
Root canal retreatment: a retrospective investigation using regression and data mining methods for the prediction of technical quality and periapical healing Objectives: This study aimed to investigate patterns and risk factors related to the feasibility of achieving technical quality and periapical healing in root canal non-surgical retreatment, using regression and data mining methods. Methodology: This retrospective observational study included 321 consecutive patients presenting for root canal retreatment. Patients were treated by graduate students, following standard protocols. Data on medical history, diagnosis, treatment, and follow-up visits variables were collected from physical records and periapical radiographs and transferred to an electronic chart database. Basic statistics were tabulated, and univariate and multivariate analytical methods were used to identify risk factors for technical quality and periapical healing. Decision trees were generated to predict technical quality and periapical healing patterns using the J48 algorithm in the Weka software. Results: Technical outcome was satisfactory in 65.20%, and we observed periapical healing in 80.50% of the cases. Several factors were related to technical quality, including severity of root curvature and altered root canal morphology (p<0.05). Follow-up periods had a mean of 4.05 years. Periapical lesion area, tooth type, and apical resorption proved to be significantly associated with retreatment failure (p<0.05).Data mining analysis suggested that apical root resorption might prevent satisfactory technical outcomes even in teeth with straight root canals. Also, large periapical lesions and poor root filling quality in primary endodontic treatment might be related to healing failure. Conclusion: Frequent patterns and factors affecting technical outcomes of endodontic retreatment included root canal morphological features and its alterations resulting from primary endodontic treatment. Healing outcomes were mainly associated with the extent of apical periodontitis pathological damages in dental and periapical tissues. To determine treatment predictability, we suggest patterns including clinical and radiographic features of apical periodontitis and technical quality of primary endodontic treatment.
Data quality is a major concern in several fields of knowledge that rely on data analysis. Missing data, in particular, have a strong negative impact in machine learning, potentially harming the knowledge extraction process by skewing results and affecting the predictive performance of the induced models. For dealing with the problem of missing data, the literature in machine learning offers a variety of strategies which can be either in the form of a preprocessing step or of an embedded solution within a predictive method. In this paper, we propose a novel evolutionary algorithm for regression tree induction, which has embedded in its evolutionary cycle a robust framework for dealing with missing data. For comparison purposes, we evaluate six traditional regression algorithms over 10 public regression datasets that were artificially modified to present different levels of missing data. Results from the experimental analysis show that the proposed approach is the one that is less affected by the increasing levels of missing data, presenting an interesting trade-off between model interpretability and predictive performance especially for datasets with more than 40% of missing data.
Background The management of the use of iodinated contrast agents (ICA) in the computed tomography (CT) has clinical and financial impacts; however, the approaches in the current research setting have limitations with regard to their exploration of the theme. This work describes the application of the stages of a process of business intelligence (BI), from the formulation of business questions, the building of a research database, and the adaptation of a multidimensional model, to the creation of dashboards to give support to the decision-making process in a hospital. This research aims to apply and document a BI process that provides support to the decision making of managers, so the use of ICA can be better managed, allowing for the identification of situations in which the material was wasted using a study applied to the hospital field. Methods An applied exploratory research with a quantitative approach in a database made up by 24 variables and 35,388 records extracted from the RIS (Radiology Information System) that is used by the General Hospital of Porto Alegre—HCPA. The software used, supplied by AGFA Healthcare, were the Qdoc system (version 6.2.0) and the Impax BI (Version 11.1.1) for, respectively, data entry and data exploration. At the end of the process, a total of 48 variables was considered. Results The BI process applied allowed for the identification of situations in which ICA was being wasted during the operationalization of the volume/mass ratio of the agent injected in the patient. It also offered the necessary substantiation for the managers to formulate plans, actions, and controls associated to the use of the material. This work made it possible to diminish in 15.65% the total consumption of ICA injected in the patients who underwent the CTAB1 exam (full CT scan of the abdomen), with a projected economy of US$ 10,039.95, for the performance of this exam from 2020 on. The measuring of the impact and the relevance of the process was 99.6% positive, according to the evaluation of the managers. Conclusions This research generated clinical and financial benefits for the HCPA, a positive evaluation by the managers and the generation of new knowledge, which can be shared with other public or private health organizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.