A possible bioisosterism between the benzamido and the phenylimidazolidin-2-one moieties has been suggested on the basis of the similarity between the molecular electrostatic potential (MEP) of metoclopramide, a D2 receptor antagonist with weak 5-HT3 receptor antagonist properties, and zetidoline, a D2 receptor antagonist. Starting from this premise, a series of phenylimidazolidin-2-one derivatives bearing a basic azabicycloalkyl or an imidazolylalkyl moiety were synthesized and evaluated for 5-HT3 receptor radioligand binding affinity ([3H]-GR 43,694). In vitro 5-HT3 receptor antagonist activity was tested in the guinea pig ileum assay (GPI). A number of high-affinity ligands were shown to be potent 5-HT3 receptor antagonists in vivo as determined by inhibition of the Bezold--Jarisch reflex in the anesthetized rat. In general, the imidazolylalkyl derivatives were found to be more active than azabicycloalkyls. 1-(3,5-Dichlorophenyl)-3-[(5-methyl-1H-imidazol-4-yl)methyl]imidazoli din-2-one (58), in particular, displayed very high affinity for the 5-HT3 receptor (Ki of 0.038 nM) with a Kb of 5.62 nM in the GPI assay, being more potent than the reference compounds (ondansetron, tropisetron, granisetron, and BRL 46,470) tested. 58 showed an ID50 comparable to that of ondansetron (2.2 micrograms/kg i.v.) in the Bezold--Jarisch reflex. A molecular modeling study based on this structurally novel series of compounds allowed the refinement of previously reported 5-HT3 receptor antagonist pharmacophore models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.