In this study, a multi-methodological analysis involving optical and physical/chemical diagnostic techniques and 3D photogrammetric survey was successfully applied, for the first time, on the large St. Michael defeating Evil painting by Mattia Preti, located inside the Church of the Immaculate Conception of Sarria (Floriana) in Malta.Pigmenting agents, binder media and raw materials were first characterized, both at elemental and molecular scales, through X-ray fluorescence spectroscopy (XRF), optical stereo microscopy (SM), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR) and gas chromatography coupled with mass spectrometry (GC-MS). The main goal was to properly identify the execution technique of this famous painter, the pigment s palette and possible nondocumented interventions. The 3D photogrammetric survey, on the other side, allowed us to non-invasively evaluate the extension of the areas that experienced restorations, and to properly map the domains of the different canvases observed. The joints between canvases suggested that the painting was folded and rolled up. In addition, the employment of a thermal camera gave evidence of the different consolidating material injection points used during the restoration to strengthen the painting. The obtained results offer useful information for the development of optimized restoration and conservation strategies to be applied and provide, at the same time, answers to open questions related to provenance and dating of the investigated artwork.
In recent years, we have been witnessing the widespread use of low-cost, increasingly high-performance Unmanned Aerial Vehicles, or UAVs, equipped with a large number of sensors capable of extracting detailed information on several scales and in an immediate manner. This study was motivated by the need to perform a geological survey in an area with difficult physical access, and to compare the results with those from conventional surveys. Here we used a Multirotor UAV equipped with a high definition RGB camera and the digital photogrammetry technique to reconstruct a three-dimensional model of the Selmun promontory, located in the northern part of the island of Malta (central Mediterranean Sea). In this area, the evident cliff retreat is linked to landslide processes involving the outcropping geological succession, characterized by the over position of stiff limestones on ductile clays. Such an instability process consists of a lateral spreading associated with toppling and fall of different-size rock blocks. Starting from the 3D model obtained from the UAV-photogrammetry, a digital geological-structural survey was performed in which we identified the spatial geometry of the fractures that characterize the area of the Selmun promontory by measuring strike, dip and dip direction of the fractures with semi-automatic digital tools. Furthermore, we were able to measure the size and volume of singularized rock masses as well as cracks, and their sizes were mapped in a GIS environment that contains a large number of digital structural measures. It is the first application of this type for the Maltese islands and the results obtained with this innovative digital methodology were then compared with those of the traditional field survey of the same area acquired during a previous campaign. This study demonstrated how the innovation of digital geological surveying lies in the possibility of mapping areas and geological features not detectable with traditional methods, mainly due to the high risk associated with the stability of the cliff or, more generally, the inaccessibility of some sites, therefore allowing the user to operate in safety and to detect in detail the most remote rocky outcrops.
The Wied il-Mielaħ Window (Gozo–Malta) is a limestone natural arch on the north-western coast of the island of Gozo in Malta. It is located at the end of the Wied il-Mielaħ valley north of the village of Għarb. This natural arch is less well known than the Azure Window, which collapsed in March 2017 following a heavy storm, but notwithstanding, it is an imposing and important natural monument too. In the past, the Wied il-Mielah valley was responsible for discharging wastewater from the surrounding localities to the Mediterranean directly at the Wied il-Mielah Window. The sewage flag was often clearly visible underneath the archway into the open sea. The natural features of the arch provide an outstanding touristic attraction. To avoid what happened to the Azure Window, a methodology for the evaluation of the collapse hazard, combining passive seismic, ground penetrating radar (GPR), geological/geomorphological surveys and mine engineering methods, is here proposed. In this study, a methodological approach was applied, based on the following: (i) passive seismic method to study the physical–mechanical characteristics of the rock mass that constitutes the window; (ii) GPR method in order to demonstrate the conservation state (i.e., the intensity of fracturing); (iii) geological/geomorphological surveys in order to obtain a crack pattern; and (iv) scaled span empirical analysis in order to evaluate the stability of the arch. The calculation of the safety factor, with a static method, gave a value equal to 3.75 with a probability of collapse of the marine arch within 50 and 100 years.
The northern region of the Maltese archipelago is experiencing lateral spreading landslide processes. This region is characterized by cliffs with a hard coralline limestone outcropping layer sitting on a thick layer of clay. Such a geological configuration causes coastal instability that results in lateral spreading which predispose to rockfalls and topplings all over the cliff slopes. The aim of this research was to develop a methodology for evaluating cliff erosion/retreat using the integration of geomatics and geophysical techniques. Starting from a 3D digital model of the Selmun promontory, generated by unmanned aerial vehicle (UAV) photogrammetry, it was possible to map the fractures and conduct geophysical measurements such as electrical resistivity tomography and ground penetrating radar for the identification and mapping of vertical fractures affecting the hard coralline limestone plateau, and to create a 3D geological model of the study area. In addition to this, high-accuracy orthophotos from UAV that were captured between 1957 and 2021 were georeferenced into a GIS and compared to aerial and satellite images. The movement and evolution of boulders and cracks in rocks were then vectorized to highlight, track and quantify the phenomenon through time. The results were used to derive a qualitative assessment of the coastal variations in the geometric properties of the exposed discontinuity surfaces to evaluate the volumes and the stop points of the observed rockfalls. The outcomes of this research were finally imported in a GIS which offers an easy approach for the collection and processing of coastal monitoring data. In principle, such a system could help local authorities to address social, economic and environmental issues of pressing importance as well as facilitate effective planning in view of a risk mitigation strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.