In this paper, a novel method for classifying electrocardiogram signals in mobile devices is proposed, which classifies different arrhythmias according to the Association for the Advancement of Medical Instrumentation standard EC57. A convolutional neural network has been constructed, trained and validated with the MIT-BIH Arrhythmia Dataset, which has 5 different classes: normal beat, supraventricular premature beat, premature ventricular contraction, fusion of ventricular and normal beat, unclassifiable beat. Once trained and validated, the model is subjected to a post-training quantization stage using the TensorFlow Lite conversion method. The obtained results were satisfactory, before and after the quantization, the convolutional neural network obtained an accuracy of 98.5%. With the quantization technique it was possible to obtain a significant reduction in model size, thus enabling the development of the mobile application, this reduction was approximately 90% compared to the original model size.
This paper presents an approach for the classification of child chest X-ray images into two classes: pneumonia and normal. We employ Convolutional Neural Networks, from pre-trained networks together with a quantization process, using the platform TensorFlow Lite method. This reduces the processing requirement and computational cost. Results have shown accuracy up to 95.4% and 94.2% for MobileNetV1 and MobileNetV2, respectively. The resulting mobile app also presents a simple and intuitive user interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.