A total of 119 samples of peanut were collected throughout the peanut production chain in São Paulo State, Brazil. The peanut samples were directly plated for determination of percentages of infection and a polyphasic approach was used to identify Aspergillus section Flavi species. Further, the potential for aflatoxin production by the isolates was tested using the agar plug technique and the presence of aflatoxins in peanuts was assessed using an immunoaffinity column followed by quantification using HPLC with reverse phase column and fluorescence detection. The limit of detection and quantification were 0.05 and 0.17μg/kg for total aflatoxins, respectively. Four species of Aspergillus section Flavi were isolated: A. caelatus (11), A. flavus (515), A. parasiticus (17) and A. tamarii (13). All isolates of A. parasiticus were able to produce aflatoxin B and G whereas aflatoxin B was produced by 50% of A. flavus isolates. Aflatoxins were found in 12 samples at concentrations ranging from 0.3 to 100μg/kg. The data reported in this study add information on the occurrence and biodiversity of fungi in peanuts at several stages of the production chain. The occurrence of aflatoxins is also of major relevance for continuous monitoring and assessment of likely exposure of consumers to aflatoxins through consumption of peanuts.
The guarantee of the high quality of rice is of utmost importance because any toxic contaminant may affect consumer health, especially in countries such as Brazil where rice is part of the daily diet. A total of 187 rice samples, from field, processing and market from two different production systems, wetland from the state of Rio Grande do Sul, dryland, from the state of Maranhão and market samples from the state of São Paulo, were analyzed for fungi belonging to Aspergillus section Flavi and the presence of aflatoxins. Twenty-three soil samples from wetland and dryland were also analyzed. A total of 383 Aspergillus section Flavi strains were isolated from rice and soil samples. Using a polyphasic approach, with phenotypic (morphology and extrolite profiles) and molecular data (beta-tubulin gene sequences), five species were identified: A. flavus, A. caelatus, A. novoparasiticus, A. arachidicola and A. pseudocaelatus. This is the first report of these last three species from rice and rice plantation soil. Only seven (17%) of the A. flavus isolates produced type B aflatoxins, but 95% produced kojic acid and 69% cyclopiazonic acid. Less than 14% of the rice samples were contaminated with aflatoxins, but two of the market samples were well above the maximum tolerable limit (5μg/kg), established by the Brazilian National Health Surveillance Agency.
This study investigated aflatoxin degradation during peanut roasting. First, peanuts contaminated with three initial aflatoxin concentrations (35, 332 and 695μg/kg) were roasted at 180°C for up to 20min. The percentage of aflatoxin degradation after 20min were 55, 64 and 81% for peanuts contaminated with aflatoxin at 35, 332 and 695μg/kg, respectively. This difference was statistically significant (p<0.05), showing that initial concentration influences aflatoxin reduction. Thereafter, peanut samples contaminated with an initial aflatoxin concentration of 85μg/kg were roasted at 160, 180 and 200°C for 5, 10, 15, 20 and 25min, then residual concentrations of aflatoxin were determined. Roasting at 160, 180 and 200°C resulted in an aflatoxin reduction of 61.6, 83.6 and 89.7%, respectively. This study has provided quantitative data reinforcing the fact that roasting alone is not enough to control aflatoxins in peanuts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.