SummaryWood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts.Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials.We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel-and tracheid-bearing species to test the hypothesis that the air flow is related to embolism.Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics.
The relationship between rooting depth and above‐ground hydraulic traits can potentially define drought resistance strategies that are important in determining species distribution and coexistence in seasonal tropical forests, and understanding this is important for predicting the effects of future climate change in these ecosystems. We assessed the rooting depth of 12 dominant tree species (representing c. 42% of the forest basal area) in a seasonal Amazon forest using the stable isotope ratios (δ18O and δ2H) of water collected from tree xylem and soils from a range of depths. We took advantage of a major ENSO‐related drought in 2015/2016 that caused substantial evaporative isotope enrichment in the soil and revealed water use strategies of each species under extreme conditions. We measured the minimum dry season leaf water potential both in a normal year (2014; Ψnon‐ENSO) and in an extreme drought year (2015; ΨENSO). Furthermore, we measured xylem hydraulic traits that indicate water potential thresholds trees tolerate without risking hydraulic failure (P50 and P88). We demonstrate that coexisting trees are largely segregated along a single hydrological niche axis defined by root depth differences, access to light and tolerance of low water potential. These differences in rooting depth were strongly related to tree size; diameter at breast height (DBH) explained 72% of the variation in the δ18Oxylem. Additionally, δ18Oxylem explained 49% of the variation in P50 and 70% of P88, with shallow‐rooted species more tolerant of low water potentials, while δ18O of xylem water explained 47% and 77% of the variation of minimum Ψnon‐ENSO and ΨENSO. We propose a new formulation to estimate an effective functional rooting depth, i.e. the likely soil depth from which roots can sustain water uptake for physiological functions, using DBH as predictor of root depth at this site. Based on these estimates, we conclude that rooting depth varies systematically across the most abundant families, genera and species at the Tapajós forest, and that understorey species in particular are limited to shallow rooting depths. Our results support the theory of hydrological niche segregation and its underlying trade‐off related to drought resistance, which also affect the dominance structure of trees in this seasonal eastern Amazon forest. Synthesis. Our results support the theory of hydrological niche segregation and demonstrate its underlying trade‐off related to drought resistance (access to deep water vs. tolerance of very low water potentials). We found that the single hydrological axis defining water use traits was strongly related to tree size, and infer that periodic extreme droughts influence community composition and the dominance structure of trees in this seasonal eastern Amazon forest.
Embolism spreading in angiosperm xylem occurs via mesoporous pit membranes between vessels. Here, we investigate how the size of pore constrictions in pit membranes is related to pit membrane thickness and embolism resistance.Pit membranes were modelled as multiple layers to investigate how pit membrane thickness and the number of intervessel pits per vessel determine pore constriction sizes, the probability of encountering large pores, and embolism resistance. These estimations were complemented by measurements of pit membrane thickness, embolism resistance, and number of intervessel pits per vessel in stem xylem (n = 31, 31 and 20 species, respectively).The modelled constriction sizes in pit membranes decreased with increasing membrane thickness, explaining the measured relationship between pit membrane thickness and embolism resistance. The number of pits per vessel affected constriction size and embolism resistance much less than pit membrane thickness. Moreover, a strong relationship between modelled and measured embolism resistance was observed.Pore constrictions provide a mechanistic explanation for why pit membrane thickness determines embolism resistance, which suggests that hydraulic safety can be uncoupled from hydraulic efficiency. Although embolism spreading remains puzzling and encompasses more than pore constriction sizes, angiosperms are unlikely to have leaky pit membranes, which enables tensile transport of water.
Xylem vulnerability to embolism represents an important trait to determine species distribution patterns and drought resistance. However, estimating embolism resistance frequently requires time‐consuming and ambiguous hydraulic lab measurements. Based on a recently developed pneumatic method, we present and test the “Pneumatron”, a device that generates high time‐resolution and fully automated vulnerability curves. Embolism resistance is estimated by applying a partial vacuum to extract air from an excised xylem sample, while monitoring the pressure change over time. Although the amount of gas extracted is strongly correlated with the percentage loss of xylem conductivity, validation of the Pneumatron was performed by comparison with the optical method for Eucalyptus camaldulensis leaves. The Pneumatron improved the precision of the pneumatic method considerably, facilitating the detection of small differences in the (percentage of air discharged [PAD] < 0.47%). Hence, the Pneumatron can directly measure the 50% PAD without any fitting of vulnerability curves. PAD and embolism frequency based on the optical method were strongly correlated (r2 = 0.93) for E. camaldulensis. By providing an open source platform, the Pneumatron represents an easy, low‐cost, and powerful tool for field measurements, which can significantly improve our understanding of plant–water relations and the mechanisms behind embolism.
Embolism spreading in dehydrating angiosperm xylem is driven by gas movement between embolized and sap-filled conduits. Here we examine how the proximity to pre-existing embolism and hydraulic segmentation affect embolism propagation.Based on the optical method, we compare xylem embolism resistance between detached leaves and leaves attached to branches, and between intact leaves and leaves with cut minor veins, for six species. Embolism resistance of detached leaves was significantly lower than that of leaves attached to stems, except for two species, with all vessels ending in their petioles. Cutting of minor veins showed limited embolism spreading in minor veins near the cuts prior to major veins. Moreover, despite strong agreement in the overall embolism resistance of detached leaves between the optical and pneumatic method, minor differences were observed during early stages of embolism formation. We conclude that embolism resistance may represent a relative trait due to an open-xylem artefact, with embolism spreading possibly affected by the proximity and connectivity to pre-existing embolism as a gas source, while hydraulic segmentation prevents such artefact. Since embolism formation may not rely on a certain pressure difference threshold between functional and embolized conduits, we speculate that embolism is facilitated by pressure-driven gas diffusion across pit membranes.bordered pits, drought stress, optical method, pneumatic method, vessel networkXylem sap in plants is frequently transported under negative pressure (Dixon & Joly, 1895;. Under conditions of low soil water content and/or high transpiration rates, the tensile force of xylem sap may increase considerably, which could lead to interruption of water transport in tracheary elements by large gas bubbles (embolism). Understanding the frequency and mechanism behind embolism formation in plant species is important because the amount of embolized conduits may affect the transport of xylem sap, and therefore photosynthesis (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.