This paper addresses the range image registration problem for views having low overlap and which may include substantial noise. The current state of the art in range image registration is best represented by the well-known iterative closest point (ICP) algorithm and numerous variations on it. Although this method is effective in many domains, it nevertheless suffers from two key limitations: It requires prealignment of the range surfaces to a reasonable starting point and it is not robust to outliers arising either from noise or low surface overlap. This paper proposes a new approach that avoids these problems. To that end, there are two key, novel contributions in this work: a new, hybrid genetic algorithm (GA) technique, including hillclimbing and parallel-migration, combined with a new, robust evaluation metric based on surface interpenetration. Up to now, interpenetration has been evaluated only qualitatively; we define the first quantitative measure for it. Because they search in a space of transformations, GAs are capable of registering surfaces even when there is low overlap between them and without need for prealignment. The novel GA search algorithm we present offers much faster convergence than prior GA methods, while the new robust evaluation metric ensures more precise alignments, even in the presence of significant noise, than mean squared error or other well-known robust cost functions. The paper presents thorough experimental results to show the improvements realized by these two contributions.
This paper presents a novel automatic framework to perform 3D face recognition. The proposed method uses a Simulated Annealing-based approach (SA) for range image registration with the Surface Interpenetration Measure (SIM), as similarity measure, in order to match two face images. The authentication score is obtained by combining the SIM values corresponding to the matching of four different face regions: circular and elliptical areas around the nose, forehead, and the entire face region. Then, a modified SA approach is proposed taking advantage of invariant face regions to better handle facial expressions. Comprehensive experiments were performed on the FRGC v2 database, the largest available database of 3D face images composed of 4,007 images with different facial expressions. The experiments simulated both verification and identification systems and the results compared to those reported by state-of-the-art works. By using all of the images in the database, a verification rate of 96.5 percent was achieved at a False Acceptance Rate (FAR) of 0.1 percent. In the identification scenario, a rank-one accuracy of 98.4 percent was achieved. To the best of our knowledge, this is the highest rank-one score ever achieved for the FRGC v2 database when compared to results published in the literature.
We present a methodology for face segmentation and facial landmark detection in range images. Our goal was to develop an automatic process to be embedded in a face recognition system using only depth information as input. To this end, our segmentation approach combines edge detection, region clustering, and shape analysis to extract the face region, and our landmark detection approach combines surface curvature information and depth relief curves to find the nose and eye landmarks. The experiments were performed using the two available versions of the Face Recognition Grand Challenge database and the BU-3DFE database, in order to validate our proposed methodology and its advantages for 3-D face recognition purposes. We present an analysis regarding the accuracy of our segmentation and landmark detection approaches. Our results were better compared to state-of-the-art works published in the literature. We also performed an evaluation regarding the influence of the segmentation process in our 3-D face recognition system and analyzed the improvements obtained when applying landmark-based techniques to deal with facial expressions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.