This work aims to enhance a classic method for rigid registration, the iterative closest point (ICP), modifying the closest point search in order to consider approximated information of local geometry combined to the Euclidean distance, originally used. For this, a preprocessing stage is applied, in which the local geometry is encoded in second-order orientation tensors. We define the CTSF, a similarity factor between tensors. Our method uses a strategy of weight variation between the CTSF and the Euclidean distance, in order to establish correspondences. Quantitative tests were made in point clouds with different geometric features, with variable levels of additive noise and outliers and in partial overlapping situations. Results show that the proposed modification increases the convergence probability of the method for higher angles, making the method comparable to state-of-art techniques.
In the pairwise rigid registration problem, we need to¯nd a rigid transformation that aligns two point clouds. The classical and most common solution is the Iterative Closest Point (ICP) algorithm. However, the ICP and many of its variants require that the point clouds are already coarsely aligned. We present in this paper a method named Shape-based Weighting Covariance Iterative Closest Point (SWC-ICP) which improves the possibility to correctly align two point clouds, regardless of the initial pose, even when they are only partially overlapped, or in the presence of noise and outliers. It bene¯ts from the local geometry of the points, encoded in second-order orientation tensors, to provide a second correspondences set to the ICP. The cross-covariance matrix computed from this set is combined with the usual cross-covariance matrix, following a heuristic strategy. In order to compare our method with some recent approaches, we present a detailed evaluation protocol to rigid registration. Results show that the SWC-ICP is among the best compared methods, with a better performance in situations of wide angular displacement of noisy point clouds.
Agradeço à minha família, minha mãe Eliana Xavier Cejnog, meu pai Walenty Cejnog, meus irmãos Pedro Walenty Xavier Cejnog e Bruno Walenty Xavier Cejnog, pelo apoio incondicional. Tudo que eu faço é por vocês e amo vocês demais.Agradeço ao meu orientador Roberto Marcondes Cesar Jr. por sempre mostrar caminhos, por con ar em mim e me dar autonomia e totais condições para o desenvolvimento do trabalho; ao meu co-orientador Teó lo Emídio de Campos pela orientação próxima, suporte na escrita e no desenvolvimento do método proposto. Agradeço à professora Valéria Meirelles Carril Elui pelo apoio total no planejamento e execução da aquisição de dados na FMRP-USP e fornecimento de referências de estudo na área de terapia ocupacional de mão.Agradeço à CAPES e à FAPESP 2 por proverem fomento ao trabalho. À USP por prover o aprendizado necessário nas disciplinas e as ferramentas necessárias para execução do projeto. À Data Machina pelo total apoio na parte nal desse doutorado, permitindo adaptação no horário de trabalho.Agradeço também aos amigos que sempre me apoiaram, encorajaram e foram muito importantes. Cada conversa, palavra trocada e momento passado juntos foram essenciais. Muitas vezes pensei em desistir e todos vocês foram importantes e me deram forças nesses momentos. Muito obrigado e espero não ter esquecido de ninguém!
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.