This survey confirms that TMZ is established as first-line chemotherapeutic treatment of APT/PC. Clinically functioning tumours, low MGMT and concurrent radiotherapy were associated with a better response. The limited long-term effect of TMZ and the poor efficacy of other drugs highlight the need to identify additional effective therapies.
Objectives Only few retrospective studies have reported an efficacy rate of temozolomide (TMZ) in pituitary tumors (PT), all around 50%. However, the long-term survival of treated patients is rarely evaluated. We therefore aimed to describe the use of TMZ on PT in clinical practice and evaluate the long-term survival. Design Multicenter retrospective study by members of the French Society of Endocrinology. Methods Forty-three patients (14 women) treated with TMZ between 2006 and 2016 were included. Most tumors were corticotroph (n = 23) or lactotroph (n = 13), and 14 were carcinomas. Clinical/pathological characteristics of PT, as well as data from treatment evaluation and from the last follow-up were recorded. A partial response was considered as a decrease in the maximal tumor diameter by more than 30% and/or in the hormonal rate by more than 50% at the end of treatment. Results The median treatment duration was 6.5 cycles (range 2–24), using a standard regimen for most and combined radiotherapy for six. Twenty-two patients (51.2%) were considered as responders. Silent tumor at diagnosis was associated with a poor response. The median follow-up after the end of treatment was 16 months (0–72). Overall survival was significantly higher among responders (P = 0.002); however, ten patients relapsed 5 months (0–57) after the end of TMZ treatment, five in whom TMZ was reinitiated without success. Discussion Patients in our series showed a 51.2% response rate to TMZ, with an improved survival among responders despite frequent relapses. Our study highlights the high variability and lack of standardization of treatment protocols.
The physiological mechanisms that control energy balance are reciprocally linked to those that control reproduction, and together, these mechanisms optimize reproductive success under fluctuating metabolic conditions. Adipose tissue plays an important role in this regulation. Indeed, it releases a variety of factors, termed adipokines that regulate energy metabolism, but also reproductive functions. This article summarizes the function and regulation of some bettercharacterized adipokines (leptin, adiponectin, resistin, visfatin, chemerin and apelin) involved in ovarian follicle development. The follicle appears to use various "nutrient sensing" mechanisms that may form the link between nutrient status and folliculogenesis. This review examines evidence for the presence of pathways that may sense nutrient flux from within the follicle including the PI3K/ Akt pathway, adenosine monophosphate-activated kinase (AMPK), and peroxisome proliferatoractivated receptors (PPARs). It also reviews current information on the role of these adipokines and signalling pathways in ovarian cancers.
Visfatin is a cytokine hormone and an enzyme involved in metabolic (obesity, type II diabetes) and immune disorders. Some data suggest a role of visfatin in ovarian function. Here, we identified visfatin in human follicles and investigated the molecular mechanisms involved in the regulation of its expression in response to insulin sensitizers, metformin (MetF) and rosiglitazone, in primary human granulosa cells (hGCs) and in a human ovarian granulosa-like tumour cell line (KGN). We also studied the effects of human recombinant visfatin (RhVisf) on steroid production and on the activation of various signalling pathways. By RT-PCR, immunoblotting and immunohistochemistry, we showed that visfatin is expressed not only in hGCs and KGN cells, but also in human cumulus cells and oocytes. In hGCs and KGN cells, MetF increased visfatin mRNA in a dose-dependent manner (0.1, 1 and 10 mM), and rosiglitazone increased visfatin mRNA expression (only at 10 μM) after treatments for 24 h, whereas both reduced it after 48 h of incubation. This regulation was confirmed at the protein level for the MetF treatment only. Using the compound C and Aicar, inhibitor and activator of AMP-activated protein kinase (AMPK), respectively, and Sirtinol, an inhibitor of sirtuin-1 (SIRT1), we observed that these MetF effects on visfatin expression were mediated through the AMPK/SIRT1 signalling pathways. RhVisf (10 ng/ml) significantly increased insulin-like growth factor-1 (IGF-1) (10 nM)- but not FSH (10 nM)-induced secretion of progesterone and estradiol as determined by radioimmunoassay and IGF-1-induced thymidine incorporation in hGCs and KGN cells. Finally, rhVisf rapidly activates the mitogen-activated protein kinase pathway via ERK1/2, P38 and Akt phosphorylation under basal conditions in primary hGC cells. In conclusion, visfatin is present in ovarian human follicles, and in hGCs and KGN cells, visfatin increases IGF-1-induced steroidogenesis and cell proliferation and MetF regulates visfatin expression through the AMPK/SIRT1 signalling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.