The pathophysiology of pulmonary arterial hypertension (PAH) induced by protein kinase inhibitors (PKIs) remains unclear. To gain knowledge into this rare and severe pathology we performed a study combining a pharmacovigilance approach and the pharmacodynamic properties of PKIs.A disproportionality analysis on the World Health Organization pharmacovigilance database VigiBase using the reporting odds ratio (ROR) and 95% confidence interval was first performed. Then, we identified the most relevant cellular targets of interest through a systematic literature review and correlated the pharmacovigilance signals with the affinity for the different PKIs. We further performed a hierarchical cluster analysis to assess patterns of binding affinity.A positive disproportionality signal was found for dasatinib, bosutinib, ponatinib, ruxolitinib and nilotinib. Five non-receptor protein kinases significantly correlate with disproportionality signals: c-Src (r=0.79, p=0.00027), c-Yes (r=0.82, p=0.00015), Lck (r=0.81, p=0.00046) and Lyn (r=0.80, p=0.00036), all belonging to the Src protein kinase family, and TEC (r=0.85, p=0.00006). Kinases of the bone morphogenetic protein signalling pathway also seem to play a role in the pathophysiology of PKI-induced PAH. Interestingly, the dasatinib affinity profile seems to be different from that of other PKIs in the cluster analysis.The study highlights the potential role of the Src protein kinase family and TEC in PAH induced by PKIs. This approach combining pharmacovigilance and pharmacodynamics data allowed us to generate some hypotheses about the pathophysiology of the disease; however, the results have to be confirmed by further studies.
Candida guilliermondii is an interesting biotechnological model for the industrial production of value-added metabolites and also remains an opportunistic emerging fungal agent of candidiasis often associated with oncology patients. The aim of the present study was to establish a convenient transformation system for C. guilliermondii by developing both an ATCC 6260-derived recipient strain and a recyclable selection marker. We first disrupted the TRP5 gene in the wild-type strain and demonstrated that trp5 mutants were tryptophan auxotroph as well as being resistant to the antimetabolite 5-fluoroanthranilic acid (FAA). Following an FAA selection of spontaneous mutants derived from the ATCC 6260 strain and complementation analysis, we demonstrated that trp5 genotypes could be directly recovered on FAA-containing medium. The TRP5 wild-type allele, flanked by two short repeated sequences of its 3'UTR, was then used to disrupt the FCY1 gene in C. guilliermondii trp5 recipient strains. The resulting fcy1 mutants displayed strong flucytosine resistance and a counter-selection on FAA allowed us to pop-out the TRP5 allele from the FCY1 locus. To illustrate the capacity of this blaster system to achieve a second round of gene disruption, we knocked out both the LEU2 and the HOG1 genes in the trp5, fcy1 background. Although all previously described yeast "TRP blaster" disruption systems used TRP1 as counter-selectable marker, this study demonstrated the potential of the TRP5 gene in such strategies. This newly created "TRP5 blaster" disruption system thus represents a powerful genetic tool to study the function of a large pallet of genes in C. guilliermondii.
Introduction The aim of the study was to identify risk factors related to human errors in the preparation of anticancer drugs in order to improve the pharmaceutical process by setting corrective actions. Method Risk factors which could increase the probability of error were identified: daily workload, workload on the previous day and subcontractors’ workload, time slot of the preparation, understaffing, incidents which could affect workflow, individual experience of technicians and cleanrooms layout. Drug reconstitution or complex fabrications were also considered as risk factors. We used univariate and multivariate logistic regression analyses to screen for correlation between risks and errors. Result Among 11 278 preparations analyzed, 115 were non-compliant. Univariate analysis shows significant variables: individual experience of technicians, technicians working in the same cleanrooms and technicians’ rotations. 2 technicians are significantly associated with a higher risk of error and 5 with a lower risk. The multivariate analysis confirmed the conclusions of the univariate. Discussion As expected, time slot of the manufacture, cleanrooms layout and some technicians increase the risk of error. Surprisingly, technicians’ experience led to increase the risk. This study is a first approach to evaluate the human error aspect in non-compliant preparations, in order to optimize security of antineoplastic drugs preparations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.