Alternative films: The effect of the chain length and the degree of substitution on the mechanical and hydrophobic properties of various cellulose fatty ester plastic films was studied. The results suggest that the cellulose ester plastic films are promising alternatives to petrochemical commodity plastics such as polyethylene.Cellulose-based plastic films were prepared by acylating cellulose in homogeneous media under microwave irradiation with fatty acyl chlorides containing either saturated or unsaturated chains of various lengths (C(12) to C(18)). The resultant cellulose esters were analysed by FTIR and (1)H NMR spectroscopy to confirm their structure and to determine their degree of substitution. Some of the cellulose fatty esters were then converted into polymer films by casting. The mechanical properties of these films were determined, including their elastic modulus, tensile strength and tensile strain level. The hydrophobicity of the polymer films was determined by contact angle measurement with water. The mechanical and hydrophobic properties of the plastic films were then compared to those of commodity plastics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.