International audienceThis paper deals with the multiobjective version of the optimal spanning tree problem. More precisely, we are interested in determining the optimal spanning tree according to an Ordered Weighted Average (OWA) of its objective values. We first show that the problem is weakly NP-hard. We then propose different mixed integer programming formulations, according to different subclasses of OWA functions. Furthermore, we provide various preprocessing procedures, the validity scopes of which depend again on the considered subclass of OWA functions. For designing such procedures, we propose generalized optimality conditions and efficiently computable bounds. These procedures enable to reduce the size of the instances before launching an off-the-shelf software for solving the mixed integer program. Their impact on the resolution time is evaluated on the basis of numerical experiments
International audienceThis paper is devoted to the search of Choquet-optimal solutions in finite graph problems with multiple objectives. The Choquet integral is one of the most sophisticated preference models used in decision theory for aggregating preferences on multiple objectives. We first present a condition on preferences (name hereafter preference for interior points) that characterizes preferences favouring compromise solutions, a natural attitude in various contexts such as multicriteria optimisation, robust optimisation and optimisation with multiple agents. Within Choquet expected utility theory, this condition amounts to using a submodular capacity and a convex utility function. Under these assumptions, we focus on the fast determination of Choquet-optimal paths and spanning trees. After investigating the complexity of these problems, we introduce a lower bound for the Choquet integral, computable in polynomial time. Then, we propose different algorithms using this bound, either based on a controlled enumeration of solutions (ranking approach) or an implicit enumeration scheme (branch and bound). Finally, we provide numerical experiments that show the actual efficiency of the algorithms on multiple instances of different sizes
In this paper, the purpose is to adapt classical interactive methods to multicriteria combinatorial problems in order to explore the non-dominated solutions set. We propose an interactive procedure alternating a calculation stage determining the current best compromise solution and a dialogue stage allowing decision maker to specify his/her preferences. For the calculation stage, we propose an efficient procedure which relies on algorithms providing k-best solutions of a scalarized version of the problem. Moreover, we show how to exploit previous iterations to speed-up the interactive process. We provide numerical experiments of our method on multicriteria shortest path and spanning tree problems.
This paper is devoted to the search for Choquet-optimal solutions in multicriteria combinatorial optimization with application to spanning tree problems and knapsack problems. After recalling basic notions concerning the use of Choquet integrals for preference aggregation, we present a condition (named preference for interior points) that characterizes preferences favouring well-balanced solutions, a natural attitude in multicriteria optimization. When using a Choquet integral as preference model, this condition amounts to choosing a submodular (resp. supermodular) capacity when criteria have to be minimized (resp. maximized). Under this assumption, we investigate the determination of Choquet-optimal solutions in the multicriteria spanning tree problem and the multicriteria 0-1 knapsack problem. For both problems, we introduce a linear bound for the Choquet integral, computable in polynomial time, and propose a branch and bound procedure using this bound. We provide numerical experiments that show the actual efficiency of the algorithms on various instances of different sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.