Abstract. The fatality of cancer predominantly results from the dissemination of primary tumor cells to distant sites and the subsequent formation of metastases. During tumor progression, some of the primary tumor cells as well as the tumor microenvironment undergo characteristic molecular changes, which are essential for the metastatic dissemination of tumor cells. In this review, we will discuss recent insights into pro-metastatic events occurring in tumor cells themselves and in the tumor stroma. Tumor cell-intrinsic alterations include the loss of cell polarity and alterations in cell-cell and cell-matrix Cell. Mol. Life Sci. 63 (2006) 449-468 1420-682X/06/040449-20 DOI 10.1007/s00018-005-5296-8 © Birkhäuser Verlag, Basel, 2006 adhesion as well as deregulated receptor kinase signaling, which together support detachment, migration and invasion of tumor cells. On the other hand, the tumor stroma, including endothelial cells, fibroblasts and cells of the immune system, is engaged in an active molecular crosstalk within the tumor microenvironment. Subsequent activation of blood vessel and lymph vessel angiogenesis together with inflammatory and immune-suppressive responses further promotes cancer cell migration and invasion, as well as initiation of the metastatic process.
In many human carcinomas, expression of the lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D) correlates with up-regulated lymphangiogenesis and regional lymph node metastasis. Here, we have used the Rip1Tag2 transgenic mouse model of pancreatic beta-cell carcinogenesis to investigate the functional role of VEGF-D in the induction of lymphangiogenesis and tumor progression. Expression of VEGF-D in beta cells of single-transgenic Rip1VEGF-D mice resulted in the formation of peri-insular lymphatic lacunae, often containing leukocyte accumulations and blood hemorrhages. When these mice were crossed to Rip1Tag2 mice, VEGF-D-expressing tumors also exhibited peritumoral lymphangiogenesis with lymphocyte accumulations and hemorrhages, and they frequently developed lymph node and lung metastases. Notably, tumor outgrowth and blood microvessel density were significantly reduced in VEGF-D-expressing tumors. Our results demonstrate that VEGF-D induces lymphangiogenesis, promotes metastasis to lymph nodes and lungs, and yet represses hemangiogenesis and tumor outgrowth. Because a comparable transgenic expression of vascular endothelial growth factor-C (VEGF-C) in Rip1Tag2 has been shown previously to provoke lymphangiogenesis and lymph node metastasis in the absence of any distant metastasis, leukocyte infiltration, or angiogenesis-suppressing effects, these results reveal further functional differences between VEGF-D and VEGF-C.
Members of the Angiopoietin family regulate various aspects of physiologic and pathologic angiogenesis. Although Angiopoietin-1 (Ang-1) decreases endothelial cell permeability and increases vascular stabilization via recruitment of pericytes and smooth muscle cells to growing blood vessels, Angiopoietin-2 (Ang-2) mediates angiogenic sprouting and vascular regression. In this study, we used the Rip1Tag2 transgenic mouse model of pancreatic b-cell carcinogenesis to investigate the roles of Ang-1 and Ang-2 in tumor angiogenesis and tumor progression. On their own, transgenic expression of human Ang-1 or Ang-2 in pancreatic b cells caused formation of peri-insular lymphatic vessels in the absence of effects on blood vessel density, islet morphology, or physiology. When crossed to Rip1Tag2 mice, both Ang-1-and Ang-2-expressing b-cell tumors showed increased peritumoral lymphangiogenesis in the absence of metastasis to local lymph nodes or distant organs. There was no alteration in tumor outgrowth, blood vessel density, or vessel maturation in Ang-1-expressing tumors. In contrast, Ang-2-expressing tumors exhibited diminished pericyte recruitment to blood vessels that were dilated, nonfunctional, and highly permeable. These tumors were hemorrhagic, highly infiltrated by leukocytes, and impaired in outgrowth. Together, our findings establish that Ang-2 antagonizes Ang-1 function, leading to excessive vessel sprouting with impaired pericyte recruitment and vessel stabilization. The poor perfusion of immature blood vessels results in retarded tumor growth, defining an important pathophysiologic pathway required for efficient tumorigenesis. Cancer Res; 71(17); 5717-27. Ó2011 AACR.
Members of the vascular endothelial growth factor (VEGF) family are critical players in angiogenesis and lymphangiogenesis. Although VEGF-A has been shown to exert fundamental functions in physiologic and pathologic angiogenesis, the exact role of the VEGF family member placental growth factor (PlGF) in tumor angiogenesis has remained controversial. To gain insight into PlGF function during tumor angiogenesis, we have generated transgenic mouse lines expressing human PlGF-1 in the β cells of the pancreatic islets of Langerhans (Rip1PlGF-1). In single-transgenic Rip1PlGF-1 mice, intra-insular blood vessels are found highly dilated, whereas islet physiology is unaffected. Upon crossing of these mice with the Rip1Tag2 transgenic mouse model of pancreatic β cell carcinogenesis, tumors of double-transgenic Rip1Tag2;Rip1PlGF-1 mice display reduced growth due to attenuated tumor angiogenesis. The coexpression of transgenic PlGF-1 and endogenous VEGF-A in the β tumor cells of double-transgenic animals causes the formation of low-angiogenic hPlGF-1/mVEGF-A heterodimers at the expense of highly angiogenic mVEGF-A homodimers resulting in diminished tumor angiogenesis and reduced tumor infiltration by neutrophils, known to contribute to the angiogenic switch in Rip1Tag2 mice. The results indicate that the ratio between the expression levels of two members of the VEGF family of angiogenic factors, PlGF-1 and VEGF-A, determines the overall angiogenic activity and, thus, the extent of tumor angiogenesis and tumor growth. [Cancer Res 2007;67(22):10840–8]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.