This paper describes the model UdL we proposed to solve the semantic textual similarity task of SemEval 2017 workshop. The track we participated in was estimating the semantics relatedness of a given set of sentence pairs in English. The best run out of three submitted runs of our model achieved a Pearson correlation score of 0.8004 compared to a hidden human annotation of 250 pairs. We used random forest ensemble learning to map an expandable set of extracted pairwise features into a semantic similarity estimated value bounded between 0 and 5. Most of these features were calculated using word embedding vectors similarity to align Part of Speech (PoS) and Name Entities (NE) tagged tokens of each sentence pair. Among other pairwise features, we experimented a classical tf-idf weighted Bag of Words (BoW) vector model but with character-based range of n-grams instead of words. This sentence vector BoW-based feature gave a relatively high importance value percentage in the feature importances analysis of the ensemble learning.
Abstract-In this article we address the problem of expanding the set of papers that researchers encounter when conducting bibliographic research on their scientific work. Using classical search engines or recommender systems in digital libraries, some interesting and relevant articles could be missed if they do not contain the same search key-phrases that the researcher is aware of. We propose a novel model that is based on a supervised active learning over a semantic features transformation of all articles of a given digital library. Our model, named Semantic Search-byExamples (SSbE), shows better evaluation results over a similar purpose existing method, More-Like-This query, based on the feedback annotation of two domain experts in our experimented use-case. We also introduce a new semantic relatedness evaluation measure to avoid the need of human feedback annotation after the active learning process. The results also show higher diversity and overlapping with related scientific topics which we think can better foster transdisciplinary research.
In the scientific digital libraries, some papers from different research communities can be described by community-dependent keywords even if they share a semantically similar topic. Articles that are not tagged with enough keyword variations are poorly indexed in any information retrieval system which limits potentially fruitful exchanges between scientific disciplines. In this paper, we introduce a novel experimentally designed pipeline for multi-label semantic-based tagging developed for open-access metadata digital libraries. The approach starts by learning from a standard scientific categorization and a sample of topic tagged articles to find semantically relevant articles and enrich its metadata accordingly. Our proposed pipeline aims to enable researchers reaching articles from various disciplines that tend to use different terminologies. It allows retrieving semantically relevant articles given a limited known variation of search terms. In addition to achieving an accuracy that is higher than an expanded query based method using a topic synonym set extracted from a semantic network, our experiments also show a higher computational scalability versus other comparable techniques. We created a new benchmark extracted from the open-access metadata of a scientific digital library and published it along with the experiment code to allow further research in the topic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.