The paper discusses selected aspects on numerical modelling of historical masonry structures. Linear elastic material models are mentioned first, and then non-linear models are discussed. The paper includes several examples of solutions which have been done with use of these models. There is also an example of results which can be obtained from anon-linear analysis of masonry structures. The finite element method is used for computations.
The contribution compares the response of envelope of chosen structure to the effects of transient load. The load was caused by air blast wave due to deflagration of methane-air mixture. The paper deals with interaction of incident blast wave and envelope structure. Considering blast courses obtained from experiments, two simplified models of load were developed. Load, defined by both load functions, was applied to 3D numerical model of the structure. Calculated result values of deflections of wall elements were compared to experimentally obtained deflections.
A development of fiber-cement composites is often focused on cost-effective and environmentally friendly materials (so-called green materials). Production of this material should produce less waste and it also should use less energy and less natural sources. There are numerous approaches to the development of green composites. One of the possible ways is a utilization of fly ashes instead of the cement part of composite.
The paper discusses a development of green cementitious composite which incorporated fly ash materials produced in the Moravian-Silesian region as a partial replacement of the cement part of the composite.
One of the options for rehabilitating existing masonry buildings is a post-tensioning of masonry. The deformation properties of the masonry in the direction parallel to bed joints are essential for the design of a suitable value of the applied force. However, these values are usually not available or are defined only roughly. The aim of this study was to determine, as accurately as possible, the deformation characteristics of the masonry in the direction parallel to the bed joints. Experimental measuring of masonry samples was carried out in laboratory facilities designed specifically for testing the triaxial state of stress of the masonry. The obtained deformations were used to determine the modulus of elasticity of the masonry in the direction of bed joints. Within these experimental tests, laboratory measuring of mechanical masonry properties was carried out, and deformation characteristics were defined on the basis of calculations. The strengths of masonry units and mortar were tested in the laboratory and, according to the tests results, the modulus of elasticity in the direction perpendicular to bed joints was determined. The modulus of elasticity in the direction parallel to bed joints was verified through a simple numerical model. The calculated deformations were compared with the measured values. On the basis of the determination of the deformation characteristics of masonry in the direction of bed joints, the ratios of the modulus of elasticity in the direction perpendicular and parallel to bed joints were concluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.