BACKGROUND Binders in plant‐based meat analogues allow different components, such as extrudate and fat particles, to stick together. Typically, binders then are solidified to transform the mass into a non‐sticky, solid product. As an option for a clean‐label binder possessing such properties, the solidification behavior of pea protein–pectin mixtures (250 g kg−1, r = 2:1, pH 6) was investigated upon heating, and upon addition of calcium, transglutaminase, and laccase, or by combinations thereof. RESULTS Mixtures of (homogenized) pea protein and apple pectin had higher elastic moduli and consistency coefficients and lower frequency dependencies upon calcium addition. This indicated that calcium physically cross‐linked pectin chains that formed the continuous phase in the biopolymer matrix. The highest degree of solidification was obtained with a mixture of pea protein and sugar beet pectin upon addition of laccase that covalently cross‐linked both biopolymers involved. All solidified mixtures lost their stickiness. A mixture of soluble pea protein and apple pectin solidified only slightly through calcium and transglutaminase, probably due to differences in the microstructural arrangement of the biopolymers. CONCLUSION The chemical makeup of the biopolymers and their spatial distribution determines solidification behavior in concentrated biopolymer mixtures. In general, pea protein–pectin mixtures can solidify and therefore have the potential to act as binders in meat analogues. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.