Summary B cells are capable of a wide range of effector functions including antibody secretion, antigen presentation, cytokine production, and generation of immunological memory. A consistent strategy for classifying human B cells by using surface molecules is essential to harness this functional diversity for clinical translation. We developed a highly multiplexed screen to quantify the co-expression of 351 surface molecules on millions of human B cells. We identified differentially expressed molecules and aligned their variance with isotype usage, VDJ sequence, metabolic profile, biosynthesis activity, and signaling response. Based on these analyses, we propose a classification scheme to segregate B cells from four lymphoid tissues into twelve unique subsets, including a CD45RB + CD27 − early memory population, a class-switched CD39 + tonsil-resident population, and a CD19 hi CD11c + memory population that potently responds to immune activation. This classification framework and underlying datasets provide a resource for further investigations of human B cell identity and function.
Duchenne muscular dystrophy is a progressive and incurable neuromuscular disease caused by genetic and biochemical defects of the dystrophin-glycoprotein complex. Here we show the regenerative potential of myogenic progenitors derived from corrected dystrophic induced pluripotent stem (iPS) cells generated from fibroblasts of mice lacking both dystrophin and utrophin. We correct the phenotype of dystrophic iPS cells using a Sleeping Beauty transposon carrying the micro-utrophin (μUTRN) gene, differentiate these cells into skeletal muscle progenitors, and transplant them back into dystrophic mice. Engrafted muscles displayed large numbers of micro-utrophin-positive myofibers, with biochemically restored dystrophin-glycoprotein complex and improved contractile strength. The transplanted cells seed the satellite cell compartment, responded properly to injury and exhibit neuromuscular synapses. We also detect muscle engraftment after systemic delivery of these corrected progenitors. These results represent an important advance toward the future treatment of muscular dystrophies using genetically corrected autologous iPS cells.
During embryogenesis, the endothelial and the hematopoietic lineages first appear during gastrulation in the blood island of the yolk sac. We have previously reported that an Ets variant gene 2 (Etv2/ER71) mutant embryo lacks hematopoietic and endothelial lineages, however, the precise roles of Etv2 in yolk sac development remains unclear. In the present study, we define the role of Etv2 in yolk sac blood island development using the Etv2 mutant and a novel Etv2-EYFP reporter transgenic line. Both the hematopoietic and the endothelial lineages are absent in the Etv2 mutant yolk sac. In the Etv2-EYFP transgenic mouse, the EYFP reporter is activated in the nascent mesoderm, expressed in the endothelial and blood progenitors, and in the Tie2+, c-kit+, CD41+ hematopoietic population. The hematopoietic activity in the E7.75 yolk sac was exclusively localized to the Etv2-EYFP+ population. In the Etv2 mutant yolk sac, Tie2+ cells are present but do not express hematopoietic or endothelial markers. In addition, these cells do not form hematopoietic colonies, indicating an essential role of Etv2 in the specification of the hematopoietic lineage. Forced overexpression of Etv2 during EB differentiation induces the hematopoietic and the endothelial lineages, and transcriptional profiling in this context identifies Lmo2 as a downstream target. Using EMSA, ChIP, transcriptional assays and mutagenesis, we demonstrate that Etv2 binds to the Lmo2 enhancer and transactivates its expression. Collectively, our studies demonstrate that Etv2 is expressed during and required for yolk sac hemato-endothelial development, and that Lmo2 is one of the downstream targets of Etv2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.