SUMMARY A major obstacle in the application of cell-based therapies for the treatment of neuromuscular disorders is obtaining the appropriate number of stem/progenitor cells to produce effective engraftment. The use of embryonic stem (ES) or induced pluripotent stem (iPS) cells could overcome this hurdle. However to date, derivation of engraftable skeletal muscle precursors that can restore muscle function from human pluripotent cells has not been achieved. Here we applied conditional expression of Pax7 in human ES/iPS cells to successfully derive large quantities of myogenic precursors, which upon transplantation into dystrophic muscle, are able to engraft efficiently, producing abundant human-derived dystrophin-positive myofibers that exhibit superior strength. Importantly, transplanted cells also seed the muscle satellite cell compartment and engraftment is present over 11 months post-transplant. This study provides the proof-of-principle for the derivation of functional skeletal myogenic progenitors from human ES/iPS cells, and highlights their potential for future therapeutic application in muscular dystrophies.
Little progress has been made toward the use of embryonic stem (ES) cells to study and isolate skeletal muscle progenitors. This is due to the paucity of paraxial mesoderm formation during embryoid body (EB) in vitro differentiation and to the lack of reliable identification and isolation criteria for skeletal muscle precursors. Here we show that expression of the transcription factor Pax3 during embryoid body differentiation enhances both paraxial mesoderm formation and the myogenic potential of the cells within this population. Transplantation of Pax3-induced cells results in teratomas, however, indicating the presence of residual undifferentiated cells. By sorting for the PDGF-alpha receptor, a marker of paraxial mesoderm, and for the absence of Flk-1, a marker of lateral plate mesoderm, we derive a cell population from differentiating ES cell cultures that has substantial muscle regeneration potential. Intramuscular and systemic transplantation of these cells into dystrophic mice results in extensive engraftment of adult myofibers with enhanced contractile function without the formation of teratomas. These data demonstrate the therapeutic potential of ES cells in muscular dystrophy.
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of articular cartilage. As chondrocytes are the only cell type forming the articular cartilage, their gradual loss is the main cause of OA. There is a substantial body of published research that suggests reactive oxygen species (ROS) are major causative factors for chondrocyte damage and OA development. Oxidative stress elicited by ROS is capable of oxidizing and subsequently disrupting cartilage homeostasis, promoting catabolism via induction of cell death and damaging numerous components of the joint. IL-1β and TNF-α are crucial inflammatory factors that play pivotal roles in the pathogenesis of OA. In this process, the mitochondria are the major source of ROS production in cells, suggesting a role of mitochondrial dysfunction in this type of arthritis. This may also be promoted by inflammatory cytokines such as IL-1β and TNF-α which contribute to chondrocyte death. In patients with OA, the expression of endoplasmic reticulum (ER) stress-associated molecules is positively correlated with cartilage degeneration. Melatonin and its metabolites are broadspectrum antioxidants and free radical scavengers which regulate a variety of molecular pathways such as inflammation, proliferation, apoptosis, and metastasis in different pathophysiological situations. Herein, we review the effects of melatonin on OA, focusing on its ability to regulate apoptotic processes and ER and mitochondrial activity. We also evaluate likely protective effects of melatonin on OA pathogenesis. K E Y W O R D Sapoptosis, endoplasmic reticulum, inflammation, melatonin, mitochondria, molecular actions, osteoarthritis, oxidative stress
An effective long-term cell therapy for skeletal muscle regeneration requires donor contribution to both muscle fibers and the muscle stem cell pool. Although satellite cells have these abilities, their therapeutic potential so far has been limited due to their scarcity in adult muscle. Myogenic progenitors obtained from Pax3-engineered mouse embryonic stem (ES) cells have the ability to generate myofibers and to improve the contractility of transplanted muscles in vivo, however whether these cells contribute to the muscle stem cell pool and are able to self-renew in vivo is still unknown. Here we addressed this question by investigating the ability of Pax3, which plays a critical role in embryonic muscle formation, and Pax7, which is important for maintenance of the muscle satellite cell pool, to promote the derivation of self-renewing functional myogenic progenitors from ES cells. We show that Pax7, like Pax3, can drive the expansion of an ES-derived myogenic progenitor with significant muscle regenerative potential. We further demonstrate that a fraction of transplanted cells remains mononuclear, and displays key features of skeletal muscle stem cells, including satellite cell localization, response to re-injury and contribution to muscle regeneration in secondary transplantation assays. The ability to engraft, self-renew, and respond to injury provide foundation for the future therapeutic application of ES-derived myogenic progenitors in muscle disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.