Malignant astrocytic gliomas such as glioblastoma are the most common and lethal intracranial tumors. These cancers exhibit a relentless malignant progression characterized by widespread invasion throughout the brain, resistance to traditional and newer targeted therapeutic approaches, destruction of normal brain tissue, and certain death. The recent confluence of advances in stem cell biology, cell signaling, genome and computational science and genetic model systems have revolutionized our understanding of the mechanisms underlying the genetics, biology and clinical behavior of glioblastoma. This progress is fueling new opportunities for understanding the fundamental basis for development of this devastating disease and also novel therapies that, for the first time, portend meaningful clinical responses.Malignant gliomas are classified and subtyped on the basis of histopathological features and clinical presentation (Fig. 1). The most common and biologically aggressive of these is glioblastoma (GBM), World Health Organization (WHO) grade IV, and is defined by the hallmark features of uncontrolled cellular proliferation, diffuse infiltration, propensity for necrosis, robust angiogenesis, intense resistance to apoptosis, and rampant genomic instability. As reflected in the old moniker "multiforme," GBM presents with significant intratumoral heterogeneity on the cytopathological, transcriptional, and genomic levels. This complexity, combined with a putative cancer stem cell (CSC) subpopulation and an incomplete atlas of (epi)genetic lesions driving GBM pathogenesis, has conspired to make this cancer one of the most difficult to understand and to treat. Despite implementation of intensive therapeutic strategies and supportive care, the median survival of GBM has remained at 12 mo over the past decade.In this review, we summarize current basic and translational challenges and highlight the striking scientific advances that promise to improve the clinical course of this lethal disease. These advances include a more comprehensive view of the altered genes and pathways in glioma and how such alterations drive the hallmark pathobiological features of the disease, the identification of new molecular subtypes in GBM, an improved understanding of the cellular origins of the disease and how CSCs may influence therapeutic responses, refined model systems for use in research and preclinical experimental therapeutics, and novel therapeutic strategies for targeting keystone genetic lesions and their pathways. For reasons of length, we have not discussed the advances in such important areas as tumor immunology, the blood-brain barrier, and tumor imaging. For the first time, there is a strong sentiment that meaningful therapeutic advances will soon flow from this explosion of new molecular and biological knowledge; the remarkable technological advances in
PPARgamma coactivator 1alpha (PGC-1alpha) is a potent stimulator of mitochondrial biogenesis and respiration. Since the mitochondrial electron transport chain is the main producer of reactive oxygen species (ROS) in most cells, we examined the effect of PGC-1alpha on the metabolism of ROS. PGC-1alpha is coinduced with several key ROS-detoxifying enzymes upon treatment of cells with an oxidative stressor; studies with RNAi or null cells indicate that PGC-1alpha is required for the induction of many ROS-detoxifying enzymes, including GPx1 and SOD2. PGC-1alpha null mice are much more sensitive to the neurodegenerative effects of MPTP and kainic acid, oxidative stressors affecting the substantia nigra and hippocampus, respectively. Increasing PGC-1alpha levels dramatically protects neural cells in culture from oxidative-stressor-mediated death. These studies reveal that PGC-1alpha is a broad and powerful regulator of ROS metabolism, providing a potential target for the therapeutic manipulation of these important endogenous toxins.
Mutations in isocitrate dehydrogenase 1 and 2 (IDH1, 2) have been demonstrated in the majority of World Health Organization grade 2 and grade 3 gliomas in adults. These mutations are associated with the accumulation of 2-hydroxyglutarate (2HG) within the tumor. Here we report the noninvasive detection of 2HG by proton magnetic resonance spectroscopy (MRS). The pulse sequence was developed and optimized with numerical and phantom analyses for 2HG detection. The concentrations of 2HG were estimated using spectral fitting in the tumors of 30 patients. Detection of 2HG correlated with mutations in IDH1 or IDH2 and with increased levels of D-2HG by mass spectrometry of resected tumor. Noninvasive detection of 2HG may prove to be a valuable diagnostic and prognostic biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.